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A simple analysis of the impact with the
ground of two or more elastic balls in
contact yields some interesting results.

A popular demonstration of the principles of
conservation of linear momentum and energy
involves dropping two contacting ‘superballs’
vertically to the ground. If the lower ball is
more massive than the upper, kinetic energy
is transferred to the latter with the result that
its maximum height after the collision can be
considerably greater than that of the original
release point. In this article, a simple analysis of
the dynamics of this process is presented, together
with extensions to the case of three or more balls.
The theoretical limits of the final velocity of the
uppermost ball are calculated for several cases,
with some unexpected results.

Figure 1. The two-ball problem.

Two-ball problem

We let the masses of the lower and upper balls be
m1 andm2 respectively withm1 > m2. They are
dropped vertically from an original heighth0. It is
assumed thath0 is very much greater than the radii
of the balls. The balls have a common downward
velocity v0 =

√
2gh0 just before impact. If the

lower ball makes an elastic collision with the
ground, it will rebound with an upward speed of
v0. The subsequent collision between the two
balls, also assumed to be perfectly elastic, is as
shown in figure 1. If we take up as positive
and apply conservation of linear momentum and
kinetic energy, we obtain

m1v0−m2v0 = m2v2+m1v1. (1)
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Figure 2. The three-ball problem.

From (1):

m1(v0− v1) = m2(v2+ v0). (3)

From (2):
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or

m1(v0− v1)(v0+ v1) = m2(v2− v0)(v2+ v0).

(4)
Divide (4) by (3):

v0+ v1 = v2− v0

or
2v0 = v2− v1. (5)

Equation (5) is an example of the principle
that for any one-dimensional elastic collision, the
relative speed of approach equals the relative speed
of separation. We will use the linear equations
(1) and (5) to find the rebound speed of the
upper ball. This results in considerable algebraic
simplification compared with the direct use of
equation (2), with its squared velocity terms.

From (5):

v1 = v2− 2v0. (6)

Substitute (6) into (1):

m1v0−m2v0 = m2v2+m1(v2− 2v0).

Solve forv2:

v2 = (3m1−m2)v0/(m1+m2). (7)

We apply equation (7) to three special cases:

(a) if m1 = m2, v2 = v0 as expected
(b) if m1 = 3m2, v2 = 2v0

(c) if m1� m2, v2 = 3v0.

Hence the limiting maximum height reached by
the upper ball ish2 = 9h0.

Three-ball problem

The collisions are represented in figure 2. The one
of main interest is betweenm2 with initial upward
speedv2 given by equation (7) andm3 with initial
downward speedv0. We use equations (1) and (5)
with appropriate changes:

m2v2−m3v0 = m3v3+m2v
′
2 (1′)

v2+ v0 = v3− v′2. (5′)
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From (5′):
v′2 = v3− v2− v0. (8)

Substitute (8) into (1′):

m2v2−m3v0 = m3v3+m2(v3− v2− v0).

Use (7) to eliminatev2 and solve forv3:

v3 = (7m1m2−m2
2−m1m3−m2m3)v0

(m2+m3)(m1+m2)
. (9)

We apply equation (9) to three special cases:

(a) if m1 = m2 = m3, v3 = v0

as expected
(b) if m1 = 3m2 = 9m3, v3 = 3.5v0

(c) if m1� m2� m3, v3 = 7v0.

Hence the limiting maximum height reached by
the uppermost ball ish3 = 49h0.

Now suppose that the total mass of the three
balls is constant (withM = m1 + m2 + m3) and
that a particular mass of the lightest ball is selected
(with γ = m3/M). What is the value ofm2/m1

such thatv3 is a maximum, and how doesv3

depend onγ in this case?
We defineβ = m2/M and α = m1/M with

α + β + γ = 1. Then from (9):

v3 = (7αβ − β2− αγ − βγ )v0

(β + γ )(α + β) . (10)

We replace α by (1 − β − γ ) and treat β
as a variable, withγ constant. After some
manipulation, equation (10) may be written as
follows:

v3 = 7β − 8β2− 7βγ − γ + γ 2

(β + γ )(1− γ ) . (11)

To find the condition for maximumv3, we
differentiate equation (11) and equate dv3/dβ to
zero. After considerable algebraic bookkeeping,
during which many terms cancel, the following
surprisingly simple quadratic equation emerges:

β2+ 2βγ + γ (γ − 1) = 0. (12)

Moreover, this equation factorizes:

(β + γ −√γ )(β + γ +√γ ) = 0.

The positive root gives

β = √γ − γ (13a)

from which we find that

α = 1− (β + γ ) = 1−√γ . (13b)

The required mass ratio is†

m2/m1 = β/α = √γ . (14)

Substitution of these optimal values ofα and
β (equations (13)) into equation (10) gives the
maximum value ofv3 as follows:

v3 =
(7− 9

√
γ )v0

1+√γ . (15)

We apply equation (15) to three special cases:

(a) if γ = m3/M = 0.04,
thenm2/m1 = 0.2 andv3 = 4.33v0

(b) if γ = 0.01,
thenm2/m1 = 0.1 andv3 = 5.55v0

(c) if γ = 0.0001,
thenm2/m1 = 0.01 andv3 = 6.84v0.

Clearly the last example is approaching the
limiting value of v3 = 7v0 obtained earlier for
the extreme case ofm1� m2� m3.

Multi-ball problem

We have shown that the maximum speed of the
uppermost ball has the following limiting values:

v1 = v0; v2 = 3v0; v3 = 7v0.

Extending the analysis to four balls withm1 �
m2 � m3 � m4 gives v4 = 15v0 with h4 =
225h0. It can be shown that in general

vn = (2n − 1)v0 (16)

wheren is the number of balls.
If we were to drop the balls from the top of

the CN Tower in Toronto, which has a height
h0 = 560 m, through frictionless air or a very
long vacuum tube, we could ask how many balls
would be required in order to give the uppermost
one a rebound speed greater than that necessary
to escape the gravitational pull of the Earth. The

† Often when a simple result such as equation (14) emerges
from a complicated algebraic expression, the inference is that
a different, perhaps more subtle, approach would give the
answers more directly. Are there any suggestions from readers
of Physics Education?
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escape speed, which is independent of the mass
of the ball, is given by the following well-known
expression:

vesc=
√

2GME/RE

and has a value of 11 200 m s−1. It is easily shown
that

v0 =
√

2gh0 =
√

2× 9.8× 560= 104.8 m s−1

and forn = 7 we findv7 = (27− 1)v0 = 127v0 =
13 410 m s−1, provided thatmn � mn−1, all
collisions are elastic and all dissipative processes
are neglected. Unfortunately, even if the mass
ratio for adjacent balls were limited to 103, we
find that to launch a microgram ball into space,
the mass ofm1 would need to be about 109 kg,
more than enough to destroy the foundations of
the tower!

A cautionary note

A word of warning is in order for those instructors,
especially males, planning to demonstrate these
physical principles. In an item on the popular
TV program America’s Funniest Home Videos, a
professor was filmed, presumably by a student in
the audience, demonstrating the two-ball problem.
He carefully positioned the balls so that their

intended line of action was well away from the
overhead lights, saying ‘Now we won’t do any
damage’. Alas, on impact with the floor, the line
between ball centres was not quite vertical. The
smaller ball rebounded obliquely at great speed
and hit the professor in a most sensitive spot,
causing him to exclaim, in a falsetto voice, ‘Maybe
my last statement was somewhat optimistic!’ It
is recommended that the balls (please don’t ask
which ones!) be drilled and loosely assembled on
a stiff wire, so that the direction of rebound motion
is reasonably well controlled. In the worst possible
scenario, it would be most unfortunate if the value
of n in equation (16) above were inadvertently
increased by one or two. . . .
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Another round of cocktails
(highballs)
In a recent paper in this journal [1], a simple
analysis of the impact with the ground of two or
more contacting elastic balls was presented. It was
shown that the maximum speed of the uppermost
nth ball was given by

vn = (2n − 1)v0

where v0 = (2gh0)
1/2, h0 being the height of the

original release point above ground level. This
result is conditional on mn � mn−1, all collisions
being perfectly elastic and all dissipative processes
being neglected.

It has been pointed out [2] that the masses of
the balls can also be arranged so that the total
kinetic energy is delivered to the top ball, leaving
all the others at rest at ground level (assuming
their sizes are � h0). We first consider the two-
ball problem: the lower ball has mass m1 and
bounces from the floor with speed v0. It collides
with the second ball, mass m2, moving downwards
with speed v0. If the lower ball is to be at rest after
this collision, then the upper ball must have speed
2v0 in order to satisfy the condition that the relative
speed of approach must equal the relative speed
of separation for a one-dimensional elastic collision
[1]. The relation between the masses is obtained
by applying momentum conservation:

m1v0 −m2v0 = m22v0 + m10

which gives
m2 = m1/3.

Similarly, the collision between m2 and m3 can be
described as follows:

m22v0 −m3v0 = m33v0 + m20.

Hence
m3 = m2/2 = m1/6.

Extension to four balls gives the following result:

m33v0 −m4v0 = m44v0 + m30

and so
m4 = 3m3/5 = m1/10.

In general, if

mn = m1/[n(n + 1)/2]

then the nth ball will have an upwards speed of nv0

and will rise to a height of n2h0. Incidentally, the
term in square brackets represents the number of
balls in a close-packed equilateral triangle with n
along each side. (Anyone for a game of snooker
as we drink our cocktails?)

The kinetic energy of the nth ball is given by

Ekn =
1
2

mn v 2
n =

1
2

m1[
n (n + 1) /2

] (nv0)
2 =

n
n + 1

m1v 2
0 .

For large n, it can be seen that Ekn approaches
a limiting value of twice the initial kinetic energy
of the bottom ball. The top ball increases speed
proportionately with n, but its diminishing mass
regulates the total energy it can obtain. It is
also easy to relate the sum of all the masses,
M =

∑n
1 mn , to that of the bottom ball for large

values of n: since the initial kinetic energy of all
balls is transferred to the top one, we have

1
2

Mv 2
0 =

1
2

mn v 2
n =

n
n + 1

m1v 2
0 .

For n � 1, M = 2m1. This result can also be
obtained mathematically as follows [3]:

M = m1 + m2 + . . . + mn

= m1

(
1 +

1
3

+
1
6

+
1

10
+ . . . +

2
n (n + 1)

)
.

Each term can be expressed as the difference
between two parts:

2
n (n + 1)

=
2
n
− 2

n + 1
.

When the summation is made, all terms cancel
except the first and last. Hence

M = m1

(
2− 2

n + 1

)
= 2m1 as n →∞.

In an earlier paper [1], it was shown that if
the balls are dropped from the top of the CN
Tower in Toronto (h 0 = 560 m), and if mn � mn−1,
only seven balls are required to give the top
one a speed greater than required to escape the
gravitational field of the Earth, again assuming all
collisions are elastic and all dissipative processes
are neglected. However, even if the mass ratio for
adjacent balls is limited to 1000, we found that to
launch a microgram ball into space, the mass of the
bottom ball would need to be 109 kg, so that this
experiment would presumably be unacceptable to
the owners of the tower and nearby residents. If,
on the other hand, we use balls with the sequence
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of masses outlined above, although we would need
107 balls to achieve escape speed for the top one,
the mass of the bottom ball would be only 5778
times that of the top one and the total mass of all
balls just twice this value. In other words, to launch
a 10 g ball into space, we would need a total mass
of only 115 kg. Moreover, since all remaining balls
are nominally at rest after the collisions, multiple
launches could be readily made by replacing the
top ball and taking the assembly back to the top of
the tower using its fast elevator!

A more realistic demonstration involves five
identical superballs, each of mass 10 g, say,
which are weighted with different amounts of lead
shot inserted symmetrically into small holes to
give resultant masses of 10, 15, 25, 50 and
150 g. Alternatively, balls increasing in radii to
give these mass ratios can be used. A commercial
assembly under the name Ninja-Balls is available
from scientific suppliers. The balls are also drilled
vertically and loosely mounted on a stiff wire for
safety reasons, as discussed earlier [1]. Dropping
the assembly from a height of 2 m should result
in the 10 g ball reaching a height close to the
theoretical value of 50 m. Try it outside!

Helpful discussions with our colleagues Neil Isenor
and Phil Eastman are gratefully acknowledged.

Anthony Anderson and John Vanderkooy
Department of Physics, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada
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Interpolation: a lost art
Those of us of a certain age who grew up before
the pocket calculator had several advantages
over students today. Admittedly there were
disadvantages as well. However, slide rules
taught us the significance of significant figures (pun
intended!). Using trigonometry and logarithmic
tables gave us a facility in the use of interpolation.
This also meant that we were comfortable with the
ideas of estimation and approximation quite early
in our studies. We learned to think in orders of
magnitude and to judge the reasonableness of an
answer. Students today, in contrast, believe in the

absolute truth of calculators and cheerfully write
down answers to seven places if the calculator
shows seven places. The calculator has become a
Delphic oracle—unfortunately the students cannot
interpret its utterances.

Square roots offer a splendid opportunity to
introduce the idea of interpolation to students. An
important by-product is that it also allows us to show
the usefulness of scientific notation. Many years
ago I developed a technique to take square roots
in my head. It seemed quite obvious to me, but
several people have said that it is not and have
asked me to share it. Moreover, as I examined
the technique, I was able to prove a theorem that
confirms its validity.

Let me first demonstrate the method. Consider
a four-digit number, for example 6736. We first
write it as 67.36 × 102. This reduces it to a
more manageable form. The square root of the
exponential term is 10. Since 67.36 lies between
64 and 81, its root must lie between 8 and 9. Now,
81 is 17 more than 64 and 67.36 is 3.36 more than
64. Let the root of 67.36 be 8 + α, where α is less
than 1 and unknown. The basis of the method is to
assume that

α = 3.36/17 = 0.198. (1)

(Note that the division may be done mentally.) In
other words, the root lies between 8 and 9 in the
same ratio as its square does between 64 and 81.
We therefore assert the root of 67.36 to be 8.198.
The correct value is 8.207, which is equivalent to
an error of 9 parts in 8200 or 0.11%, and the root
of 6736 is therefore 81.98.

Over the years I have found that the method
works well, giving results to better than 1%. Let us
now examine it and see if we can justify it. The
square of a digit n is n2. The square of n + 1 is

(n + 1)2 = n2 + 2n + 1. (2)

An increase in n by 1 increases the square by 2n+1.
If α < 1, what is the value of (n + α)2?

(n + α)2 = n2 + 2αn + α2. (3)

Clearly 2αn + α2 must be a fraction β of (2n + 1).
This yields

2αn + α2 = β(2n + 1) = 2βn + β. (4)

Since α and β are both less than 1, we find to the
first order that

α ∼ β. (5)

This is the justification of equation (1).
As a second example take the five-digit number,

43 278. This may be written as 4.3278 × 104. Its
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root lies between 2 and 3× 102. Applying equation
(5), we find

α = 0.3278/5 = 0.0658. (6)

Therefore the root of 43 278 is 2.0658 × 102. The
correct value is 2.0803× 102, an error of 0.7%.

Explaining the technique so that students can
understand and use it does take time. The results
are well worth it. With practice they are able
to use the method themselves. They begin to
understand interpolation and see the power of
scientific notation. This leads immediately to better
understanding of order of magnitude. They begin
to know in advance the range in which the unknown
root must lie. They also learn to appreciate
the power of proof in mathematics. This is an
appreciation many students lack. Discussing the
meaning of equation (5) makes them aware that the
method is not limited to specific numbers or ranges
but applies quite generally.

My goal is to show that the calculator, though a
useful tool, is no more than that. The mind is more
powerful.

I wish to thank my colleagues, James Anton and
Andrew Freda, of The Rivers School for their
interest in the method and their encouragement
to share it. They are both much aware of the

mathematical limitations of students today and seek
ways of replacing rote methods with understanding.

Ronald Newburgh
The Rivers School, 333 Winter Street, Weston,
MA 02493, USA

What’s in a bulb?
The article on the switching time of a 100 watt bulb
(Menon V J and Agrawal D C 1999 Phys. Educ.
34 34–6) is somewhat unrealistic in that it ignores
heat losses from the filament of the bulb. It is
easy to add terms for the thermal radiation from
the surface of the filament, although it will then
be necessary to integrate numerically. A graph
of temperature against time will then be seen to
reach a steady temperature. The time required is
somewhat arbitrary because it depends on what
temperature is taken to represent full brilliance, but
it will be somewhat larger than the figure of 0.06 s
stated in the article, probably quite near the value
0.10 s.

Don Hinson
51 Greenway, Chesham, Bucks HP5 2BY, UK
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