UNIVERSITETET I TRONDHEIM Norges Tekniske Høgskole Institutt for fysikk

Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 93653

Examination, course 74 355 Nuclear physics Saturday May 27, 1995 Time: 09.00-13.00

Allowed to use: (Alternative B): Officially approved pocket calculator. Rottmann, Mathematische Formelsammlung. Barnett and Cronin, Mathematical Formulae. Øgrim og Lian, Størrelser og enheter i fysikk og teknikk.

Some constants:			
The elementary charge:	e	=	$1.60 \times 10^{-19} {\rm ~C}$
The speed of light in vacuum:	c	=	$3.00 \times 10^8 \mathrm{~m/s}$
The reduced Planck's constant:	\hbar	=	$1.05 \times 10^{-34} \; \mathrm{Js}$
		=	$197 \; ({\rm MeV/c}) \; {\rm fm}$
Boltzmann's constant:	$k_{\rm B}$	=	$1.38 \times 10^{-23} \text{ J/K}$
		=	$8.62 \times 10^{-5} \text{ eV/K}$
Avogadro's constant:	N_A	=	$6.02 \times 10^{23} \ /mol$
The neutron mass:	$m_{ m n}$	=	$939.566~{ m MeV}/c^2$
The atomic mass unit:	u	=	$931.494~{ m MeV}/c^2$
1 barn:	b	=	$10^{-28} \mathrm{m}^2$

Problem 1:

The scattering amplitude for elastic scattering at the scattering angle θ may be written as

$$f(\theta) = \frac{1}{2\mathrm{i}k} \sum_{\ell=0}^{\infty} (2\ell+1) \left(\eta_{\ell} \mathrm{e}^{2\mathrm{i}\delta_{\ell}} - 1\right) P_{\ell}(\cos\theta) \ .$$

Here $k = |\mathbf{k}|$, where $\mathbf{p} = \hbar \mathbf{k}$ is the incoming momentum.

We assume rotational symmetry about \mathbf{k} , and we ignore the intrinsic spin of the particles. P_{ℓ} is the Legendre polynomial corresponding to the angular momentum ℓ , and δ_{ℓ} is the phase shift of elastic scattering. η_{ℓ} is the elasticity, which satisfies the inequality $0 \leq \eta_{\ell} \leq 1$. The total elastic scattering cross section is

$$\sigma_{\rm el} = \frac{\pi}{k^2} \sum_{\ell=0}^{\infty} (2\ell+1) \left| \eta_{\ell} \, {\rm e}^{2{\rm i}\delta_{\ell}} - 1 \right|^2 \; ,$$

whereas the total inelastic scattering cross section is

$$\sigma_{\text{inel}} = \frac{\pi}{k^2} \sum_{\ell=0}^{\infty} (2\ell+1) \left(1 - \eta_{\ell}^2\right) \,.$$

- a) Sketch (briefly!) how the expressions for $\sigma_{\rm el}$ and $\sigma_{\rm inel}$ may be derived. What is the meaning of each of the limiting cases $\eta_{\ell} = 1$ and $\eta_{\ell} = 0$?
- b) Deduce an upper limit to the cross section for absorption of a thermal neutron by a heavy nucleus. A typical temperature in a fission reactor might be 600 K. Compare with the measured cross section of 2.7×10^6 b for neutron absorption in ¹³⁵Xe.
- c) Deduce both an upper and a lower limit for the elastic scattering cross section of a thermal neutron on ¹³⁵Xe.
 What does the angular distribution look like for elastic scattering at low energy?
- d) What is meant by a *fissile*, and a *fertile*, isotope? There is (at least) one other characteristic property distinguishing these two classes of heavy isotopes. Which property, and what is the theoretical explanation?
- e) The fission products in a reactor are important for the functioning of the reactor. Some fission products are sources of *delayed* neutrons.
 What is the reason for the delay? And why are the delayed neutrons important? Other fission products *poison* the reactor.
 How? Give an example of a fission product poison!

Problem 2:

- a) There exist four separate decay series of heavy, radioactive isotopes. Why exactly four?
- b) The most long lived isotope in one of the four series is ${}^{238}_{92}$ U, with a half life of 4.47×10^9 years. This series contains another uranium isotope, ${}^{234}_{92}$ U, with a half life of 245 000 years.

Natural uranium contains the isotopes 238 (99.275%), 235 (0.720%) and 234 (0.0057%). The half life of 235 U is 7.13 × 10⁸ years.

How much do each of the three isotopes contribute to the specific activity (activity per mass) of natural uranium? Any comment?

- c) The ²³⁸U series ends in the stable lead isotope ${}^{206}_{82}$ Pb. How many α and β decays are needed for transforming a 238 U nucleus into a 206 Pb nucleus? How much energy is liberated in total? Atomic masses: $M_A({}^{238}$ U) = 238.050785 u, $M_A({}^{206}$ Pb) = 205.974440 u, $M_A({}^{4}$ He) = 4.002603 u.
- d) One kg of sea water contains 3 × 10⁻⁶ g of uranium. What is the activity of ²³⁸U in one kg of sea water? What is the total contribution to the specific activity in sea water if all the radioactive isotopes in the ²³⁸U series are included? Compare to the activity from ⁴⁰K, given that one kg of sea water contains 0.38 g of potassium, which in turn contains 0.012% of ⁴⁰K. The half life of ⁴⁰K is 1.28×10⁹ years.

Problem 3:

a) Use the level diagram of one-particle energies in the shell model (see below) to predict the spin and parity of the ground state of each of the following nuclei: ²₁H, ⁴₂He, ⁶₃Li, ¹³₆C, ¹⁴₆C, ³⁸₁₇Cl, ⁷¹₃₃As, ⁷²₃₃As, ⁷³₃₃As.