UNIVERSITETET I TRONDHEIM NORGES TEKNISKE HØGSKOLE INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Navn: Johannes Bremer T1f.: 3582, 3586 Eksamen i fag 74984 Fysiske grupperepresentasjoner Tirsdag 19.12.89 Tid: 0900-1300 Use of calculator forbidden. Printed or handwritten notes not permitted. ## Problem 1 - a) Define the class concept in group theory. Show that the characters of elements in the same class are identical. - b) The symmetry of the linear molecule CO_2 is described by the product group $D_{\varpi h} = C_{\varpi v} \otimes S_2$. (The character table of $C_{\varpi v}$ is given below and S_2 stands for the inversion group.) Verify that the two symmetry operations C_{φ} and $C_{-\varphi}$ are in the same class by means of geometric reasoning. - Cartesian displacement vectors. Reduce the representation and identify the translational and rotational modes. d) The operator $$P_{mn}^{i} = \sum_{r} \Gamma^{i} (A_{r})_{mn}^{*} A_{r}$$ projects out functions that belong to the mth row of the irreducible representation Γ^i . Find the total-symmetric vibration mode of CO_2 by means of this operator. Is it possible to determine the eigenfrequency of this state by means of absorption/emission spectroscopy? | $C_{\infty v}$ | | | E | 2 <i>C</i> _{\$} | σ_v | |---|--|---|------------------|-------------------------------|-------------------| | $x^{2} + y^{2}, z^{2}$ (xz, yz) $(x^{2} - y^{2}, xy)$ | | $A_1(\Sigma^+)$ $A_2(\Sigma^-)$ $E_1(\Pi)$ $E_2(\Delta)$ \cdots | 1
1
2
2 | 1
1
2 cos φ
2 cos 2φ | 1
-1
0
0 | ## Problem 2. a) Term configurations of free atoms and ions are specified through the use of the symbol ^{2S+1}L , where S and L are total spin and orbital quantum number, respectively. The spherical harmonic Y_L^M describes the spatial symmetry of a term. Representations of the three-dimensional rotation group R(3) have Y_L^M as basis functions. The characters are $$\chi_{L}(\alpha) = \frac{\sin((L + \frac{1}{2})\alpha)}{\sin(\frac{\alpha}{2})}$$ where $\hat{\alpha}$ denotes an arbitrary rotation. Derive this formula. - b) A Ti^{+++} ion with a single electron in a 3d-orbital is put into an octahedral complex. (See figure and character table for O_{h} below.) Assume the validity of crystal-field theory and show that the state is split into two sub-levels. - c) In the same figure the surrounding atoms, which act as sources of electrostatic potential, are shown as black points. Explain with reference to the figure why you expect a three-fold degeneracy for one of the two sub-levels. (See b)). - d) The lowest and second lowest term energies in a free Ti⁺⁺ ion with [---3d²] configuration are ³F and ³P, respectively. These levels split as ³P = ³T_{1g} and ³F = ³A_{2g} \oplus ³T_{2g} \oplus ³T_{1g} in a cubic environment. A detailed analysis shows that the energies fullfill the inequalities ³T_{1g} < ³T_{2g} < ³T_{1g} < ³A_{2g}. Plot a correlation diagram for the energy, i.e. curves showing energy levels as functions of increasing field strength. Why is the spin quantum number S conserved in the diagram? | 0 | | Е | 8C ₃ | $3C_2 = 3C_4^2$ | 6C ₂ | 6C ₄ | |---|--|-------------|-----------------|-----------------|-----------------|-----------------| | $(x^{2} - y^{2}, 3z^{2} - r^{2})$
(R_{x}, R_{y}, R_{z})
(x, y, z)
(xy, yz, zx) | $egin{array}{c} A_1 \ A_2 \ E \end{array}$ | 1
1
2 | 1
1
-1 | 1 ** 1 2 | 1
-1
0 | 1
-1
0 | | | T_1 T_2 | 3 | 0 | -1
-1 | -1
1 | 1
-1 | $$O_h = O \times i$$