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Problem 1 (25 marks)

Figure 1 depicts a photomultiplier tube (PMT) and the circuit elements involved in con-

verting the anode current to a voltage signal. The connections between a high voltage power

supply, the PMT bleeder chain and the dynodes have been omitted in order to avoid unne-

cessary clutter, and you are not required to draw these either. We will assume that a PMT

may be regarded as an ideal current source. We will ignore the dark current, the spread in

the electron transit time, and the influence of the instrument used for measuring the output

of the PMT.
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Figure 1: A photomultiplier tube with some ancillary components

a) Use elementary circuit theory to derive the differential equation satisfied by the the output

voltage Vout. Express this equation in the form shown below:

dVout

dt
+ αVout = βIA, (α, β = constants). (1)

b) Assume that a triangular current pulse of duration T arrives at the anode at t = 0; its
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Figure 2: A triangular current pulse arriving at the anode of the PMT in Fig. 1.
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shape is shown in the Fig. 2. Draw three sketches, showing the shapes of Vout for the fol-

lowing cases:

1. RL = 50 Ω and T = 10 ns,

2. RL = 5 KΩ and T = 10 ns,

3. RL = 5 KΩ and T = 1 µs.

The horizontal scale should cover the interval [0, 2T ]. Each sketch should be based on re-

placing Eq. (1) with an approximate equation for 0 ≤ t ≤ T , and finding the solution of the

approximate equation. (You will not get any credit for solving Eq. (1) and replacing the solu-

tion by approximations; you may, of course, use this approach for verifying your answers.)
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Problem 2 (25 marks)

Figure 3 is a schematic representation of the mass and spring part of an accelerometer. A

metallic beam is clamped at the centre to form two cantilevers, with concentrated end-loads.

Two strain gauges are used on each cantilever, one on top and the other underneath.

Base

A C

B D
Mass Mass

Figure 3: A mass-spring system used as an accelerometer.

The cantilevers are mounted in an aluminium box with an oil-tight cover plate, and fil-

led with a viscous fluid; the clearance between the case and the cantilevers is designed to

provide the necessary viscous damping. Figure 4 provides an overview with the cover plate

removed. (This problem can be solved even without Fig. 4; ignore the figure if it is reproduced

poorly.)

Figure 4: Internal view of the accelerometer.

Answer the following questions:–

1. Draw a diagram showing all four gauges (with their labels A, B, C, and D) forming a

Wheatstone bridge with a sensitivity four times that which could be obtained from a

single gauge. Present your analysis of the bridge circuit to support your claim.Your

answer should start with an equation of the form shown below:

Vout = Vin

[

RU

RU + RV
−

RW

RW + RY

]

, (2)
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where U , V , W , and Y stand for one of the four labels (A, B, C , and D) used in Fig. 3.

There is no need for you to derive or justify this equation.

2. With a properly connected bridge, the instrument depicted in Figure 3 would give

automatic temperature compensation. Is this true for your bridge circuit? Justify your

answer.

3. With a properly connected bridge, the instrument depicted in Fig. 3 would respond to

acceleration in one direction only. If the acceleration is along the line of the cantilevers,

the bridge will remain balanced. Is this statement valid for your bridge circuit? (N.B.

Accelerations across the width of the beams do tend to twist them, but the effect is

small, and you should neglect it.)

4. For the rest of this problem, base your answers on Eq. (3), which governs the time de-

pendence of the amplitude of vibration of the sensor under consideration:

mÿ + bẏ + Ky =? (3)

The equation is left incomplete because you are supposed to be familiar with the dy-

namic behaviour of second-order sensors. If b2/(mK) is very close to 2, the response

of the instrument to a frequency ω = ωn/2 will be within 3% of the response at a much

lower frequency (say, ω = ωn/100). True or false? Justify your answer on the basis of

Eq. (10) on the last page. (Here ωn stands for the natural frequency of vibration of the

accelerometer.)

5. In order to produce an instrument with as high a sensitivity as possible for a parti-

cular application, it is necessary to design the accelerometer to have as low a natural

frequency as possible. True or false? Justify your answer. Can you think of a disadvan-

tage associated with an instrument that has a low natural frequency?

Comment
Your answers to questions 1–3 should be based on the changes (if any) in the resistances of the

different gauges, and Eq. (2). You may find it convenient to use some or all of the text given below:–

1. When all gauges are unstressed, each will have a resistance equal to R, say. If only one gauge,

say . . . , is bonded to the accelerometer, its resistance will change from R to . . . . Eq. (2) now

becomes

Vout = . . . .

When all four gauges are used, the resistances of . . . . If the base moves towards the top of the

page, . . . . In this case, Eq. (2) leads to the following expression for the output

Vout = . . .
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2. A change in temperature will . . . . When this information is inserted into Eq. (2), one gets

Vout = . . .

3. If the acceleration is to the right, . . .
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Problem 3 (Part a: 15 marks; Part b: 10 marks)

Part a: Consider the arrangement shown in Fig. 5. We will assume that the wavelength

indicator of the monochromator is calibrated in nm, and the bandwidth of the light leaving

the slit is independent of the wavelength setting. Introduce the following notation: Eλ dλ

is the relative energy output per unit wavelength interval, and Qλ dλ is the relative number

of quanta per unit wavelength interval. Answer the following questions. Provide enough
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Figure 5: An arrangement for recording the spectral output of a tunable light source.

practical details to show that you know more than just the name of the device(s); mention,

in particular, the underlying principle(s) and any restrictions on the wavelength region that

can be sensed by your selected item(s).

1. What item(s) will you choose for measuring Eλ? If you can think of more than one

solution, mention them all.

2. Assume that whatever sensor you chose above has a low sensitivity; what measures

will you take for improving the signal-to-noise ratio. If you can think of more than one

solution, mention them all.

3. What item(s) will you choose for measuring Qλ? If you can think of more than one

solution, mention them all.

4. What is the relation between Eλ and Qλ?

5. What is the relation between Qλ and Qσ? Here σ = 1/λ is the wavenumber, and Qσ dσ

denotes the relative number of quanta emitted in the wavenumber interval between σ

and σ + dσ.

Part b: Consider the following reaction scheme, which refers to a binary organic solution

scintillator designed for detecting β-particles; here X and Y denote the solvent and the
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fluorescent solute, respectively. We will assume that no quenching species are present.

Process Rate constant Units

0. X∗ ←− X0 + β

1. X∗ −→ X0 + hν ′ k1 s−1

2. X∗ −→ X0 + heat k2 s−1

3. X∗ + Y 0 −→ X0 + Y ∗ k3 M−1 s−1

4. Y ∗ −→ Y 0 + hν ′′ k4 s−1

5. Y ∗ −→ Y 0 + heat k5 s−1

Let φX and φY denote the intrinsic fluorescence quantum yields of X (in the absence of Y )

and of Y , respectively. Let N0 be the number of X∗ molecules generated by the absorption

of a single β-particle, and define φ, the fluorescence efficiency of the binary solution, as

φ =
Number of photons emitted by Y ∗

N0

.

Use the data given in Table 1 to find the value of k3.

Table 1: Values of parameters

Parameter Value Parameter Value

φX 5% k2 9.5× 107s−1

φY 80% N0 not needed

φ 40% k3 to be determined
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Appendix I

Taylor series:

f(x + a) = f(x) +

∞
∑

n=1

an

n!

dfn

dxn
. (4)

MacLaurin series:

f(x) = f(0) +
∞

∑

n=1

xn

n!

dfn

dxn

∣

∣

∣

∣

x=0

. (5)

Two special cases are:

sinx = x−
x3

3!
+

x5

5!
−

x7

7!
+ · · · (all real values of x), (6)

cos x = 1−
x2

2!
+

x4

4!
−

x6

6!
+ · · · (all real values of x). (7)

Binomial series:

(a + x)n = an + nan−1x +
n(n− 1)

2!
an−2x2 + · · · . (8)

Two special cases are:

(1 + x)1/2 = 1 +
1

2
x−

1

2 · 4
x2 + · · · −1 < x ≤ 1, (9)

(1 + x)−1/2 = 1−
1

2
x +

1 · 3

2 · 4
x2 + · · · −1 < x ≤ 1. (10)

Geometric series:

1/(1 − x) = 1 + x + x2 + x3
· · · . (11)

Euler’s formula:

einφ = cosnφ + i sinnφ. (12)

Three corollaries of particular interest are:

sin x =
eix − e−ix

2i
= i sinh(ix)

[

sinh y ≡
ey − e−y

2

]

, (13)

cos x =
eix + e−ix

2
= cosh(ix)

[

cosh y ≡
ey + e−y

2

]

. (14)

cos 2x = cos2 x− sin2 x = 2cos2 x− 1 = 1− 2 sin2 x (15)

A useful integral:
∫

∞

0

e−kx dx = 1/k, (k > 0). (16)
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