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Solutions

1a) The total cross section is the same in the laboratory frame and in the CM frame.

Intuitively, a cross section in either of these two frames is an area perpendicular to the
relative velocity of the two particles, hence also perpendicular to the relative velocity
of the two frames. Perpendicular distances and perpendicular areas are invariant under
the Lorentz transformation from one frame to the other.

To argue more formally, the probability of a two-particle reaction, or in practice the
expected number of reactions in an experiment where many particles hit a target par-
ticle, is Lorentz invariant. The number of reactions is computed theoretically as a cross
section times the number of incoming particles per area. The number of particles per
area is Lorentz invariant, since the number of particles and the area are both Lorentz
invariant. Since everything else is Lorentz invariant, we conclude that the cross section
is Lorentz invariant.

1b) Write I for the reaction e+ +e− → γ+γ and II for the reverse reaction γ+γ → e+ +e−.

Write the differential cross section for e+ + e− → γ+ γ, in the CM frame, including the
statistical factor S = 1/2, as

dσ(I)

dΩ
=

1

2

(

h̄c

8πECM

)2 |~pγ |
|~pe|

〈|M(I)|2〉 .

Similarly, write the differential cross section for γ+γ → e+ + e−, in the CM frame, now
with a statistical factor of S = 1, as

dσ(II)

dΩ
=

(

h̄c

8πECM

)2 |~pe|
|~pγ |

〈|M(II)|2〉 .

The centre of mass energy ECM, the electron (or positron) momentum |~pe| and the
photon momentum |~pγ | are the same in the reactions I and II. The scattering angles θ
and ϕ are also the same in the solid angle element dΩ = d(cos θ) dϕ and in the scattering
amplitude M.

In both reactions we have that

〈|M|2〉 =
1

4

∑

spins

|M|2 .

The factor of 1/4 is there because we average over 4 spin states in the initial state (two
spin states for the electron and two for the positron in reaction I, two spin states for
each photon in reaction II).

Time reversal invariance implies that
∑

spins |M(I)|2 =
∑

spins |M(II)|2, so that

dσ(II)

dΩ
= 2

dσ(I)

dΩ

|~pe|2
|~pγ |2

.
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The same relation holds for the total cross sections, after we integrate over angles,

σ(II) = 2σ(I)
|~pe|2
|~pγ |2

.

In the CM frame all four particles have the same energy. The energy of each photon is
Eγ = |~pγ | c, and the energy of the electron and of the positron is the same, Ee = Eγ =
|~pγ | c. The velocity of the electron or the positron is

|~ve| =
|~pe| c2
Ee

=
|~pe| c
|~pγ |

.

In the given formula for the cross section of reaction I the relative velocity |~v| of the
electron and positron is twice the velocity of each particle, |~v| = 2 |~ve|. Thus,

σ(I) =
πr 2

e c

2 |~ve|
, σ(II) = 2σ(I)

|~ve|2
c2

=
πr 2

e |~ve|
c

.

1c) An estimate of the average photon energy:

EγCMB = kTCMB = 8.617 × 10−5 eV/K × 2.73 K = 2.35 × 10−4 eV .

Let p1 = (E1/c, ~p1) and p2 = (E2/c, ~p2) be the four-momenta of the two colliding
photons. The centre of mass energy ECM is given by the formula

E 2
CM = (p1 + p2)

2c2 = (p 2
1 + p 2

2 + 2 p1 · p2) c
2 = 2 p1 · p2 c

2 = 2E1E2 (1 − cosα) ,

where α is the angle between the three-momenta ~p1 and ~p2. The photons have mass
zero, so that p 2

1 = p 2
2 = 0.

The most favourable situation for the production of an electron–positron pair is a head
on collision, with cosα = −1, then ECM = 2

√
E1E2. The threshold centre of mass

energy is 2mec
2, where me is the electron mass. Then for E2 = 2.35 × 10−4 eV and a

head on collision we have the threshold value

E1 =
4(mec

2)2

4E2

=
(0.511 MeV)2

2.35 × 10−4 eV

= 1.11 × 1015 eV = 1.11 × 106 GeV = 1.11 PeV = 1.11 petaelectronvolt .

Strictly speaking the threshold is a little lower, because the average photon energy is
2.7 kT rather than kT , and because many photons have energies above the average
value.

1d) The number density of photons is n = 400/cm3. Inside a cube of volume d3 there are
nd3 photons, presenting a target of total area A = nd3σ, with σ = πr 2

e . The photons
hitting the cube are spread over an area of d2, and the probability that a photon will
react if it hits the cube, is

P (d) =
A

d2
= ndσ .

We have assumed in this calculation that P (d) is small, so that we can neglect the
probability that one photon in the box will shadow for another.
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The probability that a high energy photon is able to travel a small distance d without
interacting, is 1 − P (d) = 1 − ndσ. The probability that it is able to travel a large
distance D = Nd without interacting, is

1 − P (D) = (1 − ndσ)N = e−Nndσ = e−nDσ .

The probability that it travels a distance x = Nd without interacting, and then interacts
in the next small interval dx = d, is

dP = e−nσxnσ dx .

The total probability that it interacts somewhere is
∫

∞

0
e−nσxnσ dx =

∫

∞

0
e−y dy = 1 ,

with y = nσx. The average distance it travels before interacting is

D =

∫

∞

0
x e−nσxnσ dx =

1

nσ

∫

∞

0
y e−y dy =

1

nσ

=
1

400 cm−3 × π × (2.818 × 10−15m)2
= 1.00 × 1020 m .

This is about 10 000 lightyears, one third of the distance to the centre of our Milky Way
galaxy. Photons of such high energies could not reach us from other galaxies.

2a) Possible values are ℓ = 0, 1, 2, 3, . . . and s = 0, 1.

Two particles can form a bound state when they attract each other. Typically, the
attraction is stronger the closer they come together. In a quantum state with relative
angular momentum ℓ the wave function goes as rℓ when r → 0, where r is the distance
between the particles. To minimize the energy we should minimize ℓ in order to bring
the particles close together, therefore the ground state usually has ℓ = 0.

A quark–antiquark bound state has total angular momentum ~J = ~L+ ~S, where ~L is the
relative orbital angular momentum and ~S = ~S1 + ~S2 is the sum of the two spins. In the
ground state we may assume that ℓ = 0 , this means that ~L = 0 and the total angular
momentum is equal to the total spin: ~J = ~S.

The quark model prediction is that π0 and η are superpositions of uu and dd, in both
cases with quantum numbers ℓ = 0 and s = 0, giving P = (−1)ℓ+1 = −1 and C =
(−1)ℓ+s = +1.

Similarly, ρ0 and ω are superpositions of uu and dd with ℓ = 0 and s = 1, giving
P = (−1)ℓ+1 = −1 and C = (−1)ℓ+s = −1.

2b) A state of n photons has charge conjugation symmetry C = (−1)n.

Parapositronium in the ground state, with ℓ = 0 and s = 0, has C = (−1)ℓ+s = +1 and
can decay into two photons.

Orthopositronium in the ground state, with ℓ = 0 and s = 1, has C = (−1)ℓ+s = −1
and has to decay into three photons (C is conserved in electromagnetic interactions).

Each photon in the final state brings with it a factor of α, the fine structure constant,
in the decay rate. For this reason (and for reasons of phase space) the three photon
decay of orthopositronium is slower (has a longer life time) than the two photon decay
of parapositronium.
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2c) Decay rate:

Γ = Lσ = |ψrel(0)|2 |~v| 4πr 2
e c

|~v| =
1

π

(

αmec

2h̄

)3

4πc

(

αh̄

mec

)2

=
α5mec

2

2h̄
.

Life time:

τ =
1

Γ
=

2h̄

α5mec2
= 1.245 × 10−10 s .

3a) The particles of a generation can be produced in particle–antiparticle pairs. But this is
not really a transformation between generations.

A quark of one generation may be transformed into a quark of another generation by
the weak interaction, when the quark emits or absorbs a W boson.

Technically speaking, the weak interaction mixes the three quarks d, s, b of the three
generations, as described by the unitary Kobayashi–Maskawi (or Cabibbo–Kobayashi–
Maskawi, CKM) matrix.

A neutrino of one generation may change into a neutrino of another generation by
neutrino oscillation.

Technically speaking again, the neutrino oscillations are due to a mass matrix which
is non-diagonal in the generations. The unitary matrix transforming the three neut-
rino mass eigenstates into the neutrinos of the three generations is called the Maki–
Nakagawa–Sakata (MNS) matrix.

3b) The coupling constant in QCD is energy dependent, as a result of vacuum polarization,
and decreases with increasing energy, so that the quarks behave asymptotically as non-
interacting particles (but they do interact at any finite energy). This is called asymptotic
freedom, it implies that QCD at high energy (a few GeV) can be treated by perturbation
theory.

3c) A grand unified theory unifies both strong, electromagnetic and weak interactions, and
has one single non-Abelian gauge group and one single coupling constant. The present
standard model is a gauge theory with three gauge groups: SU(3) for QCD, SU(2) and
U(1) for the electroweak interaction. It has three coupling constants, one for each gauge
group. One possibility is to include these three groups as subgroups of SU(5).

The strongest argument in favour of grand unification is that the energy dependence
of the three coupling constants is such that they seem to approach a common value at
very high energies, around 1016 GeV = 1025 eV.

Another argument in favour of grand unification is that it could explain why electric
charge is quantized, with the proton and electron charges cancelling exactly, so that
neutral atoms have exactly zero net charge. We know of no other way to explain this
experimental fact (if magnetic monopoles exist, that would be another explanation).

The strongest argument against proposed grand unified theories is that they predict
proton decay, which has not been observed.

Another argument against is that the three curves showing the energy dependence of
the coupling constants do not meet exactly. Supersymmetry is claimed to be able to
solve this problem, by bringing in new particles at energies above what is available in
present accelerators.

4


