NTNU Trondheim, Institutt for fysikk

Examination for FY3452 Gravitation and Cosmology

Contact: Kåre Olaussen, tel. 73593652 / 45437170
Possible languages for your answers: Bokmål, English, German, Nynorsk.
Allowed tools: Pocket calculator, mathematical tables
Some formulas can be found at the end of p.2.

1. Sphere S^{2}.

The line-element of the two-dimensional unit sphere S^{2} is given by

$$
\begin{equation*}
\mathrm{d} s^{2}=\mathrm{d} \vartheta^{2}+\sin ^{2} \vartheta \mathrm{~d} \phi^{2} . \tag{6pts}
\end{equation*}
$$

a. Write out the geodesic equations and deduce the Christoffel symbols $\Gamma^{a}{ }_{b c}$.
b. Calculate the Ricci tensor $R_{a b}$ and the scalar curvature R. (Hint: Use the symmetry properties of this space.)
a. We use as Lagrange function L the kinetic energy T. From $L=g_{a b} \dot{x}^{a} \dot{x}^{b}=\dot{\vartheta}^{2}+\sin ^{2} \vartheta \dot{\phi}^{2}$ we find

$$
\begin{array}{rlrl}
\frac{\partial L}{\partial \phi}=0 & , & \frac{\mathrm{~d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{\phi}} & =\frac{\mathrm{d}}{\mathrm{~d} t}\left(2 \sin ^{2} \vartheta \dot{\phi}\right)=2 \sin ^{2} \vartheta \ddot{\phi}+4 \cos \vartheta \sin \vartheta \dot{\vartheta} \dot{\phi} \\
\frac{\partial L}{\partial \vartheta}=2 \cos \vartheta \sin \vartheta \dot{\phi}^{2} & , & \frac{\mathrm{~d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{\vartheta}}=\frac{\mathrm{d}}{\mathrm{~d} t}(2 \dot{\vartheta})=2 \ddot{\vartheta}
\end{array}
$$

and thus the Lagrange equations are

$$
\ddot{\phi}+2 \cot \vartheta \dot{\vartheta} \dot{\phi}=0 \quad \text { and } \quad \ddot{\vartheta}-\cos \vartheta \sin \vartheta \dot{\phi}^{2}=0 .
$$

Comparing with the given geodesic equation, we read off the non-vanishing Christoffel symbols as $\Gamma^{\phi}{ }_{\vartheta \phi}=\Gamma^{\phi}{ }_{\phi \vartheta}=\cot \vartheta$ and $\Gamma^{\vartheta}{ }_{\phi \phi}=-\cos \vartheta \sin \vartheta$. (Remember that $2 \cot \vartheta=\Gamma^{\phi}{ }_{\vartheta \phi}+\Gamma^{\phi}{ }_{\phi \vartheta}$.)
b. The Ricci tensor of a maximally symmetric spaces satisfies $R_{a b}=K g_{a b}$. Since the metric is diagonal, the non-diagonal elements of the Ricci tensor are zero too, $R_{\phi \vartheta}=R_{\vartheta \phi}=0$. We calculate with

$$
R_{a b}=R_{a c b}^{c}=\partial_{c} \Gamma^{c}{ }_{a b}-\partial_{b} \Gamma^{c}{ }_{a c}+\Gamma^{c}{ }_{a b} \Gamma^{d}{ }_{c d}-\Gamma^{d}{ }_{b c} \Gamma^{c}{ }_{a d}
$$

the $\vartheta \vartheta$ component,

$$
\begin{aligned}
R_{\vartheta \vartheta} & =0-\partial_{\vartheta}\left(\Gamma^{\phi}{ }_{\vartheta \phi}+\Gamma^{\vartheta}{ }_{\vartheta \vartheta}\right)+0-\Gamma^{d}{ }_{\vartheta c} \Gamma^{c}{ }_{\vartheta d}=0+\partial_{\vartheta} \cot \vartheta-\Gamma^{\phi}{ }_{\vartheta \phi} \Gamma^{\phi}{ }_{\vartheta \phi} \\
& =0-\partial_{\vartheta} \cot \vartheta-\cot ^{2} \vartheta=1
\end{aligned}
$$

From $R_{a b}=K g_{a b}$, we find $R_{\vartheta \vartheta}=K g_{\vartheta \vartheta}$ and thus $K=1$. Hence $R_{\phi \phi}=g_{\phi \phi}=\sin ^{2} \vartheta$. The scalar curvature is (diagonal metric with $g^{\phi \phi}=1 / \sin ^{2} \vartheta$ and $g^{\vartheta \vartheta}=1$)

$$
R=g^{a b} R_{a b}=g^{\phi \phi} R_{\phi \phi}+g^{\vartheta \vartheta} R_{\vartheta \vartheta}=\frac{1}{\sin ^{2} \vartheta} \sin ^{2} \vartheta+1 \times 1=2 .
$$

page 1 of 2 pages
[If you wonder that $R=2$, not 1 : in $d=2$, the Gaussian curvature K is connected to the "general" scalar curvature R via $K=R / 2$. Thus $K= \pm 1$ means $R= \pm 2$ for spaces of constant unit curvature radius, S^{2} and H^{2}.]

2. Black holes.

The metric outside a spherically symmetric mass distribution with mass M is given in Schwarzschild coordinates by

$$
\mathrm{d} s^{2}=\frac{\mathrm{d} r^{2}}{1-\frac{2 M}{r}}+r^{2}\left(\mathrm{~d} \vartheta^{2}+\sin ^{2} \vartheta \mathrm{~d} \phi^{2}\right)-\mathrm{d} t^{2}\left(1-\frac{2 M}{r}\right)
$$

a. Use the "advanced time parameter"

$$
p=t+r+2 M \ln |r / 2 M-1|
$$

to eliminate t in the line-element (i.e. introduce Eddington-Finkelstein coordinates) and show that in the new coordinates the singularity at $R=2 M$ is absent.
b. Draw a space-time diagram considering radial light-rays in the $\tilde{t} \equiv p-r$, r plane. Include the world-line of an observer falling into the black hole. Explain why $r=2 M$ is an event horizon.
(4 pts)
c. Determine the smallest possible stable circular orbit of a massive particle. (Hint: Use the Killing vectors of the metric and consider the effective potential $V_{\text {eff }}$.)
a. Forming the differential,

$$
\mathrm{d} p=\mathrm{d} t+\mathrm{d} r+\left(\frac{r}{2 M}-1\right)^{-1} \mathrm{~d} r=\mathrm{d} t+\left(1-\frac{2 M}{r}\right)^{-1} \mathrm{~d} r
$$

we can eliminate $\mathrm{d} t$ from the Schwarzschild metric and find

$$
\mathrm{d} s^{2}=-\left(1-\frac{2 M}{r}\right) \mathrm{d} p^{2}+2 \mathrm{~d} p \mathrm{~d} r+r^{2} \mathrm{~d} \Omega
$$

This metric is regular at $2 M$ and valid for all $r>0$.
b. For radial light-rays, $\mathrm{d} s=\mathrm{d} \phi=\mathrm{d} \vartheta=0$, it follows

$$
0=-\left(1-\frac{2 M}{r}\right) \mathrm{d} p^{2}+2 \mathrm{~d} p \mathrm{~d} r
$$

There exist three types solutions: i) for $r=2 M$, light-rays have constant r and p; ii) light-rays with $p=$ const.; iii) dividing by $\mathrm{d} p$,

$$
0=-\left(1-\frac{2 M}{r}\right) \mathrm{d} p+\mathrm{d} r
$$

we separate variables and integrate,

$$
p-2(r+2 M \ln |r / 2 M-1|)=\text { const. }
$$

The light-rays of type ii) are ingoing: as t increase, r has to increase to keep p constant. The light-rays of type ii) are ingoing for $r<2 M$ and outgoing for $r>2 M$. Thus for $r<2 M$ both radial light-rays moves towards $r=0$; all wordlines of observers are inside such light-cones and have to move towards $r=0$ too. Hence $r=2 M$ is an event horizon.
c. Spherical symmetry allows us to choose $\vartheta=\pi / 2$ and $u_{\vartheta}=0$. Then we replace in the normalization condition $\mathbf{u} \cdot \mathbf{u}=-1$ written out for the Schwarzschild metric,

$$
-1=-\left(1-\frac{2 M}{r}\right)\left(\frac{\mathrm{d} t}{\mathrm{~d} \tau}\right)^{2}+\left(1-\frac{2 M}{r}\right)^{-1}\left(\frac{\mathrm{~d} r}{\mathrm{~d} \tau}\right)^{2}+r^{2}\left(\frac{\mathrm{~d} \phi}{\mathrm{~d} \tau}\right)^{2}
$$

the velocities u_{t} and u_{r} by the conserved quantities

$$
\begin{aligned}
e & \equiv-\xi \cdot \mathbf{u}=\left(1-\frac{2 M}{r}\right) \frac{\mathrm{d} t}{\mathrm{~d} \tau} \\
l & \equiv \eta \cdot \mathbf{u}=r^{2} \sin \vartheta^{2} \frac{\mathrm{~d} \phi}{\mathrm{~d} \tau}
\end{aligned}
$$

Inserting e and l, then reordering gives

$$
\frac{e^{2}-1}{2}=\frac{1}{2}\left(\frac{\mathrm{~d} r}{\mathrm{~d} \tau}\right)^{2}+V_{\mathrm{eff}}
$$

with

$$
V_{\mathrm{eff}}=-\frac{M}{r}+\frac{l^{2}}{2 r^{2}}-\frac{M l^{2}}{r^{3}} .
$$

Circular orbits correspond to $\mathrm{d} V_{\text {eff }} / \mathrm{d} r=0$ with

$$
r_{1,2}=\frac{l^{2}}{2 M}\left[1 \pm \sqrt{1-12 M^{2} / l^{2}}\right] .
$$

The stable circular orbit (i.e. at the minimum of $V_{\text {eff }}$) corresponds to the plus sign. The square root becomes negative for $l^{2}=6 M$ and thus the "innermost stable circular orbit" is for a Schwarzschild black hole at $r_{\text {ISCO }}=6 \mathrm{M}$.

3. Cosmology.

Consider a flat universe dominated by one matter component with E.o.S. $w=P / \rho=$ const. a. Use that the universe expands adiabatically to find the connection $\rho=\rho(R, w)$ between the density ρ, the scale factor R and the state parameter w.
b. Find the age t_{0} of the universe as function of w and the current value of the Hubble parameter, H_{0}.
(3 pts)
c. Comment on the value of t_{0} in the case of a positive cosmological constant, $w=-1$. (2 pts)
d. Find the relative energy loss per time, $E^{-1} \mathrm{~d} E / \mathrm{d} t$, of relativistic particles due to the expansion of the universe for $H_{0}=70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$.
a. For adiabatic expansion, the first law of thermodynmaics becomes $\mathrm{d} U=-P \mathrm{~d} V$ or

$$
\mathrm{d}\left(\rho R^{3}\right)=-3 P R^{2} \mathrm{~d} R
$$

Eliminating P with $P=P(\rho)=w \rho$,

$$
\frac{\mathrm{d} \rho}{\mathrm{~d} R} R^{3}+3 \rho R^{2}=-3 w \rho R^{2}
$$

Separating the variables,

$$
-3(1+w) \frac{\mathrm{d} R}{R}=\frac{\mathrm{d} \rho}{\rho},
$$

we can integrate and obtain $\rho \propto R^{-3(1+w)}$.
b. For a flat universe, $k=0$, with one dominating energy component with $w=P / \rho=$ const. and $\rho=\rho_{\text {cr }}\left(R / R_{0}\right)^{-3(1+w)}$, the Friedmann equation becomes

$$
\begin{equation*}
\dot{R}^{2}=\frac{8 \pi}{3} G \rho R^{2}=H_{0}^{2} R_{0}^{3+3 w} R^{-(1+3 w)} \tag{1}
\end{equation*}
$$

where we inserted the definition of $\rho_{\mathrm{cr}}=3 H_{0}^{2} /(8 \pi G)$. Separating variables we obtain

$$
\begin{equation*}
R_{0}^{-(3+3 w) / 2} \int_{0}^{R_{0}} \mathrm{~d} R R^{(1+3 w) / 2}=H_{0} \int_{0}^{t_{0}} \mathrm{~d} t=t_{0} H_{0} \tag{2}
\end{equation*}
$$

and hence the age of the Universe follows as

$$
t_{0} H_{0}=\frac{2}{3+3 w} .
$$

c. Models with $w>-1$ need a finite time to expand from the initial singularity $R(t=0)=0$ to the current value of the scale factor R_{0}, while a Universe with only a Λ has no "beginning", $t_{0} H_{0} \rightarrow \infty$.
d. The connection between the energy E_{0} today and the energy at redshift z is

$$
E(z)=(1+z) E_{0}
$$

and thus $\mathrm{d} E=\mathrm{d} z E_{0}$. Differentiating $1+z=R_{0} / R(t)$, we obtain with $H=\dot{R} / R$

$$
\mathrm{d} z=-\frac{R_{0}}{R^{2}} \mathrm{~d} R=-\frac{R_{0}}{R^{2}} \frac{\mathrm{~d} R}{\mathrm{~d} t} \mathrm{~d} t=-(1+z) H \mathrm{~d} t .
$$

Combining the two equations, we find $\mathrm{d} E=-(1+z) H \mathrm{~d} t E_{0}=-H \mathrm{~d} t E$ or

$$
\frac{1}{E} \frac{\mathrm{~d} E}{\mathrm{~d} t}=-H(z)=-H_{0}(1+z)^{3 / 2}
$$

Numerically, we find for the current epoch

$$
\frac{1}{E} \frac{d E}{d t} \approx \frac{7.1 \times 10^{6} \mathrm{~cm}}{\mathrm{~s} 3.1 \times 10^{24} \mathrm{~cm}} \approx 5.2 \times 10^{-36} \mathrm{~s}^{-1}
$$

4. Symmetries.

Consider in Minkowski space a complex scalar field ϕ with Lagrange density

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{2} \partial_{a} \phi^{\dagger} \partial^{a} \phi-\frac{1}{4} \lambda\left(\phi^{\dagger} \phi\right)^{2} \tag{1.5pts}
\end{equation*}
$$

a. Name the symmetries of the Langrangian.
b. Derive Noether's theorem in the form

$$
\begin{equation*}
0=\delta \mathcal{L}=\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \delta \phi_{a}-K^{\mu}\right) \tag{4.5pts}
\end{equation*}
$$

c. Derive one conserved current of your choice.
a. space-time symmetries: Translation, Lorentz, scale invariance. internal: global $\mathrm{SO}(2) / \mathrm{U}(1)$ invariance.
b. We assume that the collection of fields ϕ_{a} has a continuous symmetry group. Thus we can consider an infinitesimal change $\delta \phi_{a}$ that keeps $\mathcal{L}\left(\phi_{a}, \partial_{\mu} \phi_{a}\right)$ invariant,

$$
\begin{equation*}
0=\delta \mathcal{L}=\frac{\partial \mathcal{L}}{\partial \phi_{a}} \delta \phi_{a}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \delta \partial_{\mu} \phi_{a} \tag{3}
\end{equation*}
$$

Now we exchange $\delta \partial_{\mu}$ against $\partial_{\mu} \delta$ in the second term and use then the Lagrange equations, $\delta \mathcal{L} / \delta \phi_{a}=\partial_{\mu}\left(\delta \mathcal{L} / \delta \partial_{\mu} \phi_{a}\right)$, in the first term. Then we can combine the two terms using the Leibniz rule,

$$
\begin{equation*}
0=\delta \mathcal{L}=\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}\right) \delta \phi_{a}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \partial_{\mu} \delta \phi_{a}=\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \delta \phi_{a}\right) \tag{4}
\end{equation*}
$$

Hence the invariance of \mathcal{L} under the change $\delta \phi_{a}$ implies the existence of a conserved current, $\partial_{\mu} J^{\mu}=0$, with

$$
\begin{equation*}
J_{1}^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \delta \phi_{a} . \tag{5}
\end{equation*}
$$

If the transformation $\delta \phi_{a}$ leads to change in \mathcal{L} that is a total four-divergence, $\delta \mathcal{L}=\partial_{\mu} K^{\mu}$, and boundary terms can be dropped, then the equation of motions are still invariant. The conserved current is changed to

$$
J^{\mu}=\delta \mathcal{L} / \delta \partial_{\mu} \phi_{a} \delta \phi_{a}-K^{\mu}
$$

c. i) Translations: From $\phi_{a}(x) \rightarrow \phi_{a}(x-\varepsilon) \approx \phi_{a}(x)-\varepsilon^{\mu} \partial_{\mu} \phi(x)$ we find the change $\delta \phi_{a}(x)=$ $-\varepsilon^{\mu} \partial_{\mu} \phi(x)$. The Lagrange density changes similiarly, $\mathcal{L}(x) \rightarrow \mathcal{L}(x-\varepsilon)$ or $\delta \mathcal{L}(x)=-\varepsilon^{\mu} \partial_{\mu} \mathcal{L}(x)=$ $-\partial_{\mu}\left(\varepsilon^{\mu} \mathcal{L}(x)\right)$. Thus $K^{\mu}=-\varepsilon^{\mu} \mathcal{L}(x)$ and inserting both in the Noether current gives

$$
J^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}\left[-\varepsilon^{\nu} \partial_{\nu} \phi(x)\right]+\varepsilon^{\mu} \mathcal{L}(x)=\varepsilon_{\nu} T^{\mu \nu}
$$

with $T^{\mu \nu}$ as energy-momentum tensor and four-momentum as Noether charge.
or
ii) Charge conservation: We can work either with complex fields and $U(1)$ phase transformations

$$
\phi(x) \rightarrow \phi(x) \mathrm{e}^{\mathrm{i} \alpha} \quad, \quad \phi^{\dagger}(x) \rightarrow \phi^{\dagger}(x) \mathrm{e}^{-\mathrm{i} \alpha}
$$

or real fields (via $\phi=\left(\phi+\mathrm{i} \phi_{2}\right) / \sqrt{2}$) and invariance under rotations $\mathrm{SO}(2)$. With $\delta \phi=\mathrm{i} \alpha \phi$, $\delta \phi^{\dagger}=-\mathrm{i} \alpha \phi^{\dagger}$, the conserved current is

$$
J^{\mu}=\mathrm{i}\left[\phi^{\dagger} \partial^{\mu} \phi-\left(\partial^{\mu} \phi^{\dagger}\right) \phi\right]
$$

Some formula: Signature of the metric $(-,+,+,+)$.

$$
\begin{gathered}
\ddot{x}^{c}+\Gamma^{c}{ }_{a b} \dot{x}^{a} \dot{x}^{b}=0 \\
R_{b c d}^{a}=\partial_{c} \Gamma^{a}{ }_{b d}-\partial_{d} \Gamma^{a}{ }_{b c}+\Gamma^{a}{ }_{e c} \Gamma^{e}{ }_{b d}-\Gamma^{a}{ }_{e d} \Gamma^{e}{ }_{b c}, \\
\frac{e^{2}-1}{2}=\frac{\dot{r}^{2}}{2}+V_{\text {eff }} \\
H^{2}=\frac{8 \pi}{3} G \rho-\frac{k}{R^{2}}+\frac{\Lambda}{3} \\
\frac{\ddot{R}}{R}=\frac{\Lambda}{3}-\frac{4 \pi G}{3}(\rho+3 P)
\end{gathered}
$$

$1 \mathrm{Mpc}=3.1 \times 10^{24} \mathrm{~cm}$

FY:

Fig. 16.10 Schwarzschild solution in advanced Eddington-Finkelstein coordinates.

page 7 of 2 pages

