
FY3452 Gravitation and Cosmology Final exam 21.5.2010

NTNU Trondheim, Institutt for fysikk

Examination for FY3452 Gravitation and Cosmology

Contact: K̊are Olaussen, tel. 735 93652 / 45437170
Possible languages for your answers: Bokm̊al, English, German, Nynorsk.

Allowed tools: Pocket calculator, mathematical tables

Some formulas can be found at the end of p.2.

1. Sphere S2.

The line-element of the two-dimensional unit sphere S2 is given by

ds2 = dϑ2 + sin2 ϑdφ2 .

a. Write out the geodesic equations and deduce the Christoffel symbols Γa
bc. (6 pts)

b. Calculate the Ricci tensor Rab and the scalar curvature R. (Hint: Use the symmetry
properties of this space.) (6 pts)

a. We use as Lagrange function L the kinetic energy T . From L = gabẋ
aẋb = ϑ̇2 + sin2 ϑφ̇2 we

find

∂L

∂φ
= 0 ,

d

dt

∂L

∂φ̇
=

d

dt
(2 sin2 ϑφ̇) = 2 sin2 ϑφ̈ + 4 cos ϑ sinϑϑ̇φ̇

∂L

∂ϑ
= 2 cos ϑ sinϑφ̇2 ,

d

dt

∂L

∂ϑ̇
=

d

dt
(2ϑ̇) = 2ϑ̈

and thus the Lagrange equations are

φ̈ + 2 cotϑϑ̇φ̇ = 0 and ϑ̈ − cos ϑ sinϑφ̇2 = 0 .

Comparing with the given geodesic equation, we read off the non-vanishing Christoffel symbols

as Γφ
ϑφ = Γφ

φϑ = cotϑ and Γϑ
φφ = − cos ϑ sin ϑ. (Remember that 2 cot ϑ = Γφ

ϑφ + Γφ
φϑ.)

b. The Ricci tensor of a maximally symmetric spaces satisfies Rab = Kgab. Since the metric
is diagonal, the non-diagonal elements of the Ricci tensor are zero too, Rφϑ = Rϑφ = 0. We
calculate with

Rab = Rc
acb = ∂cΓ

c
ab − ∂bΓ

c
ac + Γc

abΓ
d
cd − Γd

bcΓ
c
ad

the ϑϑ component,

Rϑϑ = 0 − ∂ϑ(Γφ
ϑφ + Γϑ

ϑϑ) + 0 − Γd
ϑcΓ

c
ϑd = 0 + ∂ϑ cot ϑ − Γφ

ϑφΓφ
ϑφ

= 0 − ∂ϑ cot ϑ − cot2 ϑ = 1

From Rab = Kgab, we find Rϑϑ = Kgϑϑ and thus K = 1. Hence Rφφ = gφφ = sin2 ϑ.
The scalar curvature is (diagonal metric with gφφ = 1/ sin2 ϑ and gϑϑ = 1)

R = gabRab = gφφRφφ + gϑϑRϑϑ =
1

sin2 ϑ
sin2 ϑ + 1 × 1 = 2 .
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[If you wonder that R = 2, not 1: in d = 2, the Gaussian curvature K is connected to the

“general” scalar curvature R via K = R/2. Thus K = ±1 means R = ±2 for spaces of constant

unit curvature radius, S2 and H2.]

2. Black holes.

The metric outside a spherically symmetric mass distribution with mass M is given in
Schwarzschild coordinates by

ds2 =
dr2

1 − 2M
r

+ r2(dϑ2 + sin2 ϑdφ2) − dt2
(

1 − 2M

r

)

a. Use the “advanced time parameter”

p = t + r + 2M ln |r/2M − 1|

to eliminate t in the line-element (i.e. introduce Eddington-Finkelstein coordinates) and
show that in the new coordinates the singularity at R = 2M is absent. (3 pts)
b. Draw a space-time diagram considering radial light-rays in the t̃ ≡ p−r, r plane. Include
the world-line of an observer falling into the black hole. Explain why r = 2M is an event
horizon. (4 pts)
c. Determine the smallest possible stable circular orbit of a massive particle. (Hint: Use
the Killing vectors of the metric and consider the effective potential Veff .) (7 pts)

a. Forming the differential,

dp = dt + dr +
( r

2M
− 1

)−1
dr = dt +

(

1 − 2M

r

)−1

dr ,

we can eliminate dt from the Schwarzschild metric and find

ds2 = −
(

1 − 2M

r

)

dp2 + 2dpdr + r2dΩ .

This metric is regular at 2M and valid for all r > 0.

b. For radial light-rays, ds = dφ = dϑ = 0, it follows

0 = −
(

1 − 2M

r

)

dp2 + 2dpdr .

There exist three types solutions: i) for r = 2M , light-rays have constant r and p; ii) light-rays
with p = const.; iii) dividing by dp,

0 = −
(

1 − 2M

r

)

dp + dr

we separate variables and integrate,

p − 2(r + 2M ln |r/2M − 1|) = const.
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The light-rays of type ii) are ingoing: as t increase, r has to increase to keep p constant. The

light-rays of type ii) are ingoing for r < 2M and outgoing for r > 2M . Thus for r < 2M both

radial light-rays moves towards r = 0; all wordlines of observers are inside such light-cones and

have to move towards r = 0 too. Hence r = 2M is an event horizon.

c. Spherical symmetry allows us to choose ϑ = π/2 and uϑ = 0. Then we replace in the
normalization condition u · u = −1 written out for the Schwarzschild metric,

−1 = −
(

1 − 2M

r

) (

dt

dτ

)2

+

(

1 − 2M

r

)−1 (

dr

dτ

)2

+ r2

(

dφ

dτ

)2

the velocities ut and ur by the conserved quantities

e ≡ −ξ · u =

(

1 − 2M

r

)

dt

dτ

l ≡ η · u = r2 sinϑ2 dφ

dτ
.

Inserting e and l, then reordering gives

e2 − 1

2
=

1

2

(

dr

dτ

)2

+ Veff

with

Veff = −M

r
+

l2

2r2
− Ml2

r3
.

Circular orbits correspond to dVeff/dr = 0 with

r1,2 =
l2

2M

[

1 ±
√

1 − 12M2/l2
]

.

The stable circular orbit (i.e. at the minimum of Veff) corresponds to the plus sign. The square root

becomes negative for l2 = 6M and thus the “innermost stable circular orbit” is for a Schwarzschild

black hole at rISCO = 6M .

3. Cosmology.

Consider a flat universe dominated by one matter component with E.o.S. w = P/ρ =const.
a. Use that the universe expands adiabatically to find the connection ρ = ρ(R,w) between
the density ρ, the scale factor R and the state parameter w. (4 pts)
b. Find the age t0 of the universe as function of w and the current value of the Hubble
parameter, H0. (3 pts)
c. Comment on the value of t0 in the case of a positive cosmological constant, w = −1. (2
pts)
d. Find the relative energy loss per time, E−1 dE/dt, of relativistic particles due to the
expansion of the universe for H0 = 70km/s/Mpc. (1 pt)

a. For adiabatic expansion, the first law of thermodynmaics becomes dU = −PdV or

d(ρR3) = −3PR2dR
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Eliminating P with P = P (ρ) = wρ,

dρ

dR
R3 + 3ρR2 = −3wρR2 .

Separating the variables,

−3(1 + w)
dR

R
=

dρ

ρ
,

we can integrate and obtain ρ ∝ R−3(1+w).

b. For a flat universe, k = 0, with one dominating energy component with w = P/ρ = const. and
ρ = ρcr (R/R0)

−3(1+w), the Friedmann equation becomes

Ṙ2 =
8π

3
GρR2 = H2

0R3+3w
0 R−(1+3w) , (1)

where we inserted the definition of ρcr = 3H2
0/(8πG). Separating variables we obtain

R
−(3+3w)/2
0

∫ R0

0
dR R(1+3w)/2 = H0

∫ t0

0
dt = t0H0 (2)

and hence the age of the Universe follows as

t0H0 =
2

3 + 3w
.

c. Models with w > −1 need a finite time to expand from the initial singularity R(t = 0) = 0

to the current value of the scale factor R0, while a Universe with only a Λ has no “beginning”,

t0H0 → ∞.

d. The connection between the energy E0 today and the energy at redshift z is

E(z) = (1 + z)E0

and thus dE = dzE0. Differentiating 1 + z = R0/R(t), we obtain with H = Ṙ/R

dz = −R0

R2
dR = −R0

R2

dR

dt
dt = −(1 + z)Hdt .

Combining the two equations, we find dE = −(1 + z)HdtE0 = −HdtE or

1

E

dE

dt
= −H(z) = −H0(1 + z)3/2 .

Numerically, we find for the current epoch

1

E

dE

dt
≈ 7.1 × 106cm

s 3.1 × 1024cm
≈ 5.2 × 10−36s−1 .
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4. Symmetries.

Consider in Minkowski space a complex scalar field φ with Lagrange density

L = −1

2
∂aφ

†∂aφ − 1

4
λ(φ†φ)2 .

a. Name the symmetries of the Langrangian. (1.5 pts)
b. Derive Noether’s theorem in the form

0 = δL = ∂µ

(

∂L
∂(∂µφa)

δφa − Kµ

)

.

(4.5 pts)
c. Derive one conserved current of your choice. (4 pts)

a. space-time symmetries: Translation, Lorentz, scale invariance. internal: global SO(2) / U(1)

invariance.

b. We assume that the collection of fields φa has a continuous symmetry group. Thus we can
consider an infinitesimal change δφa that keeps L(φa, ∂µφa) invariant,

0 = δL =
∂L
∂φa

δφa +
∂L

∂(∂µφa)
δ∂µφa . (3)

Now we exchange δ∂µ against ∂µδ in the second term and use then the Lagrange equations,
δL/δφa = ∂µ(δL/δ∂µφa), in the first term. Then we can combine the two terms using the Leibniz
rule,

0 = δL = ∂µ

(

∂L
∂(∂µφa)

)

δφa +
∂L

∂(∂µφa)
∂µδφa = ∂µ

(

∂L
∂(∂µφa)

δφa

)

. (4)

Hence the invariance of L under the change δφa implies the existence of a conserved current,
∂µJµ = 0, with

Jµ
1 =

∂L
∂(∂µφa)

δφa . (5)

If the transformation δφa leads to change in L that is a total four-divergence, δL = ∂µKµ, and
boundary terms can be dropped, then the equation of motions are still invariant. The conserved
current is changed to

Jµ = δL/δ∂µφa δφa − Kµ .

c. i) Translations: From φa(x) → φa(x − ε) ≈ φa(x) − εµ∂µφ(x) we find the change δφa(x) =
−εµ∂µφ(x). The Lagrange density changes similiarly, L(x) → L(x− ε) or δL(x) = −εµ∂µL(x) =
−∂µ(εµL(x)). Thus Kµ = −εµL(x) and inserting both in the Noether current gives

Jµ =
∂L

∂(∂µφa)
[−εν∂νφ(x)] + εµL(x) = ενT

µν
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with Tµν as energy-momentum tensor and four-momentum as Noether charge.
or
ii) Charge conservation: We can work either with complex fields and U(1) phase transformations

φ(x) → φ(x)eiα , φ†(x) → φ†(x)e−iα

or real fields (via φ = (φ + iφ2)/
√

2) and invariance under rotations SO(2). With δφ = iαφ,
δφ† = −iαφ†, the conserved current is

Jµ = i
[

φ†∂µφ − (∂µφ†)φ
]

Some formula: Signature of the metric (−, +, +, +).

ẍc + Γc
abẋ

aẋb = 0

Ra
bcd = ∂cΓ

a
bd − ∂dΓ

a
bc + Γa

ecΓ
e
bd − Γa

edΓ
e
bc ,

e2 − 1

2
=

ṙ2

2
+ Veff

H2 =
8π

3
Gρ − k

R2
+

Λ

3

R̈

R
=

Λ

3
− 4πG

3
(ρ + 3P )

1Mpc = 3.1 × 1024cm
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