The $\lambda \phi^3$ theory.

Consider the theory of a scalar field ϕ with mass m and a $\frac{\lambda}{3!}\phi^3$ self-interaction in d dimensions

- a.) Write down the Lagrange density \mathcal{L} and explain your choice of signs.
- b.) Determine the dimension of the field ϕ and of the coupling λ in d dimensions. Fix d such that the coupling λ is dimensionless.
- c.) Draw the Feynman diagram(s) and write down the analytical expression for the self-energy $i\Sigma$ (i.e. the one-loop correction for the free propgator) in momentum space.
- d.) Determine the symmetry factor of $i\Sigma$.
- e.) Calculate the self-energy $i\Sigma$ using dimensional regularisation.
- f.) Determine the running of the mass $m(\mu)$.

-The end-

Please drop your solutions in my mailbox (D5-166) before Thu, 20.3. at 10.00, hand them in during the lectures or sent them by email.