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Model Answers

The last equation in the examination paper was number 16. The first equation in this

document has been numbered 17, and likewise for the figures. For marks alloted to separate

parts of each problem, see Table 1.

Table 1: Marks alloted to separate parts of each problem

Part(s) Problem 1 Problem 2 Problem 3

a 13

b 12

1–3 3

4 12

5 4

a1 15

b 10

13 marks for each item.
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Problem 1

Part a: Let Q(t) denote the charge stored by the capacitor Cs. We take as our starting point

the following equations:

Vout = i1RL =
Q

Cs

, (17)

i2 =
dQ

dt
= Cs

dVout

dt
, (18)

i2 = IA − i1. (19)

Upon equating the right-hand sides of the last two equations, we get:

IA − i1 = Cs

dVout

dt
, (20)

which yields, after multiplication by RL and some rearrangement, the relation

RLCs
dVout

dt
+ Vout = IARL. (21)

If one divides the above equation by RLCs and sets RLCs = τ , one gets

dVout

dt
+

1

τ
Vout =

1

Cs
IA, (22)

which is Eq. (1) of the examination paper

It will be more convenient to simplify the notation and rephrase Eq. (21) as

dy

dt
+ αy = βIA, (23)

by setting α = 1/τ and β = 1/Cs.

Part b: The shape of the current pulse in Fig. 3 can be described as follows:

IA =







I0

T
t if 0 ≤ t ≤ T ,

0 if t > T .
(24)

Let us examine the values of the time constant and the duration of the pulses:

1. With RL = 50 Ω, τ = 1 ns, and T = 10 ns,

2. With RL = 5 KΩ, τ = 100 ns, and T = 10 ns,

3. With RL = 5 KΩ, τ = 100 ns, and T = 1 µs.

In cases 1 and 3, the time constant is one-tenth of the pulse width. For these cases, we can find

a good approximation Eq. (23) by taking the following steps. We first write this equation as

y + τ
dy

dt
= τβIA(t), (25)
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and then replace the right-hand side by y(t + τ ). This leads to the approximation

y(t) = τβIA(t − τ ) = τβI0

t − τ

T
. (26)

Now, the time constant is 10 times smaller than the pulse width in the first and the last case;

this means that if we choose t/T as the abscissa and y/(I0τβ) as the ordinate, it will be enough

to draw one figure for the two cases. Apart from an initial transient phase (see case 2), the

output will rise linearly with the input. At the end of the pulse, the output will be

y(t = T ) = τβIA(T − τ ) (27)

= τβ I0

(

1 −
τ

T

)

︸ ︷︷ ︸

see Eq. (26)

= 0.9I0τβ. (28)

For t > T , the output will decay exponentially in accordance with the relation

y(t) == 0.9I0τβ exp[−(t− T )/τ ],

and would become negligibly small after t ≥ T + 5τ = 1.5T . The exact solution is plotted

in Fig. 6. In a freehand sketch, one would accept a curved rise and a curved (approximately

exponential) fall. If a candidate chooses to argue that y(t + τ ) can be further approximated as

y(t) and concludes that output pulse will have nearly the same shape as IA, as implied by the

(dotted) red curve in Fig. 6; such an answer will be acceptable, but will not deserve full credit.

In Case 2, the time constant τ is much longer than than T .

dy

dt
= βIA(t) =

βI0

T
t, (0 ≤ t ≤ T ). (29)

The output will rise parabolically reaching the value βI0T at t = τ (see Fig. 7); thereafter

it will decay almost linearly because e−x = 1 − x (approximately) when x � 1. The dotted

red curve in Fig. 7 has no significance and is shown only for indicating the shape of the input

current pulse,

Figure 6: Outputs for cases 1 and 3. Figure 7: Output for case 2.
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Problem 2

1) For marks alloted to different parts, see p. 6. The correct wiring diagram is shown in the

figure below. The output of the bridge can be expressed as

Vout

Vs

=

[
RC

RC + RD

−
RB

RA + RB

]

. (30)

Figure 8: Wiring diagram showing the location of the strain gauges

When all gauges are unstressed, each will have a resistance equal to R, say. If only one gauge,

say A, is bonded to the accelerometer, its resistance will change from R to R+∆R = R(1+x),

where x = ∆R/R and |x| � 1. It is easy to see that in this case the output will be

Vout

Vs

=

[
1 + x

2(1 + 1

2
x + · · · )

−
1

2

]

≈
1

2
[(1 + x)(1 − 1

2
x)] −

1

2
=

x

4
. (31)

When all four gauges are used, the resistances of A and C will change from R to R = R(1+x),

and those of B and D will change from R to R = R(1−x). If the two end masses move towards

the bottom of the page, A and C will be in tension, whereas B and D will be in compression;

in other words, x > 1. It is easy to see that in this case the output will be

Vout

Vs

=

[
1 + x

2
−

1 − x

2

]

= x. (32)

2) A change in temperature will affect all four gauges equally; let y denote the fractional

change due to the change in temperature.

Vout

Vs

=

[
1 + x + y

2(1 + y)
−

1 − x + y

2(1 + y)

]

=
x

1 + y
≈ x. (A4)
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3) If the acceleration is to the right, gauges C and D will be in compression, and the other

two in tension. Each term on the right-hand side will equal 1

2
, and the bridge will remain

balanced.

4) Introduce the following symbols:

b

m
= 2γ,

K

m
= ω2

n, so that
b2

mK
=

4γ2

ω2
n

. (33)

We consider only one cantilever; for the whole instrument, a factor of two must be applied

to describe the total mass, total damping, and total spring constant.

The right-hand side Eq. (1) of the examination paper should read −mẍ, where x denotes

the displacement of the frame. Divide by m and rephrase it in terms of the symbols defined in

Eq. (33) and the D-operator, obtaining thereby the equation shown below

(D2 + 2γD + ω2
n)y = −D2x. (34)

We now consider a sinusoidal displacement x = x0 sinωt = =x0e
iωt, so that the acceleration

α ≡ D2x = =α0e
iωt, with α0 = −ω2x0. We go on to calculate the particular integral yp as

follows

yp = =

[
1

D2 + 2γD + ω2
n

{−α0e
iωt}

]

(35)

= −α0=

[
1

−ω2 + 2iωγ + ω2
n

eiωt

]

(36)

= −α0=

[
1

(ω2
n − ω2) + 2iωγ

eiωt

]

(37)

= −α0=

[
1

Reiφ
eiωt

]

=
−α0

R
sin(ωt − φ) = y0 sin(ωt− φ) (38)

where

R ≡
√

(ω2
n − ω2)2 + 4γ2ω2, and tanφ ≡

2γ

ω
(39)

Whence follows the relation
∣
∣
∣
∣

yp

α0

∣
∣
∣
∣
≡ S =

1
√

(ω2
n − ω2)2 + 4γ2ω2

=
1

√

ω4
n + ω4 + 2ω2(2γ2 − ω2

n)
(40)

=
1

√

ω4
n + ω4

, if 2γ2 = ω2
n or b2/(mK) = 2. (41)

When 2γ2 = ω2
n we can express the sensitivity S in terms of the ratio ρ ≡ ω/ωn as follows:

ω2
nS =

1
√

1 + ρ4
(42)

when ρ = 0.01, ω2
nS is practically equal to unity. When ρ = 1/2, we can write

ω2
nS =

1
√

1 + 1
16

≈
1

1 + 1
32

≈ 1 −
1

32
=

31

32
, equal to 1 within 3%.
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We have used Eq. (12) of the examination paper according to which (1+x)−1/2 may be replaced

by 1 − 1

2
x, when x � 1.

5) The statement is true, since a glance at Eq. (42) shows that the sensitivity is proportional

to 1/ω2
n. The disadvantage of having a low natural frequency is that one would need a large

mass and a stiff spring; these qualities can only be obtained in a bulky instrument.
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Problem 3

Part a: Since we need to measure the true spectral distribution (either Eλ or Qλ), we must

choose a non-selective detector. This means that if a candidate chooses a PMT (or a CCD

or any other selective detector) should expect to receive no credit for such an answer. Even

with the right choice, some comments should be made about the wavelength range where a

particular device would be expected to function properly.

1. A satisfactory answer would mention four non-selective thermal detectors: thermopile,

Golay cell, pyroelectric detector, and bolometer. These sensors have been described in

Chapter 15 of the lecture notes. All these devices can work over the given spectral range

(namely 200–1200 nm)

2. Since the light source has a steady output, one can record several spectra and average

these. Alternatively, one can use a chopper and a lock-in amplifier to improve the signal

to noise ratio.

3. For measuring Qλ, one can use a relative quantum counter, which essentially consists of

two parts: a highly concentrated solution of a substance that has a high quantum yield

of fluorescence and a detector that can detect the fluorescence emitted by the solution.

Since most fluorescence substances are transparent to the near infrared region, one would

not be able to cover the entire wavelength range of interest. For detecting the emitted

radiation, the most convenient device is a PMT (but a Geiger counter or a CCD detector

can also be used).

4. Since the energy of a quantum of frequency ν is hν = hc/λ, where h denotes Planck’s

constant and c is the speed of light, the relation is Eλ = hνQλ = hcQλ/λ.

5. The relation is |Qλ dλ| = |Qσ dσ|; that is Qσ = λ2Qλ.

Part b: It follows from the given reaction scheme that

φX =
k1

k1 + k2

. (43)

Since φX = 0.05 and k2 = 9.5×107 s−1, we find k1 = 5×106 s−1, so that k ≡ k1 +k2 = 108 s−1.

A quick way to proceed now is to note that φ must equal φETφY , where

φET =
k3[Y

0]

k1 + k2 + k3[Y 0]
(44)

is the efficiency of energy transfer. With φ = 0.4 and φY = 0.8, we get φET = 0.5, from which it

follows that k3[Y
0] = k = 108 s−1. Thus k3 = (108/[Y 0]) M−1 s−1. To go further, we need [Y 0],

which is not given. [A candidate who has omitted [Y 0] in Eq. 44 or an equivalent equation will

not get any credit.]
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