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NTNU Institutt for fysikk

Contact during the exam:
Professor Arne Brataas
Telephone: 73593647

Exam in TFY4205 Quantum Mechanics
Saturday June 10, 2006

9:00–13:00

Allowed help: Alternativ C
Approved Calculator.
K. Rottman: Matematische Formelsammlung
Barnett and Cronin: Mathematical formulae

At the end of the problem set some relations are given that might be helpful.

This problem set consists of 9 pages.

Problem 1. Spin
A system of two particles with spin 1/2 is described by an effective Hamiltonian

H = A (s1z + s2z) +Bs1 · s2 , (1)

where s1 and s2 are the two spins, s1z and s2z are their z-components, and A and B are
constants. Find the energy levels of this Hamiltonian.
Solution
We choose χS,MS

as the common eigenstate of S2 = (s1 + s2)2 and Sz = s1z + s2z . For
S = 1, MS = 0,±1, it is a triplet and is symmetric when the two electrons are exchanged.
For S = 0, MS = 0, it is a singlet and is antisymmetric. For stationary states we use the
time-independent Schrödinger equation

HχS,MS
= EχS,MS

(2)

Using

S2χ1,MS
= S(S + 1)~2χ1,MS

= 2~2χ1,MS
(3)

S2χ0,MS
= S(S + 1)~2χ1,MS

= 0 (4)

and

S2 = (s1 + s2)
2 = s2

1 + s2
2 + 2s1 · s2 (5)

=
3~2

4
+

3~2

4
+ 2s1 · s2 (6)
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we have

s1 · s2χ1,MS
=

(
S2

2
− 3~2

4

)
χ1,MS

(7)

=
~2

4
χ1,MS

, (8)

s1 · s2χ0,0 =
(
S2

2
− 3~2

4

)
χ0,0 (9)

= −3~2

4
χ0,0 , (10)

and

Szχ1,MS
= (s1z + s2z)χ1,MS

= MS~χ1,MS
(11)

Szχ0,0 = 0 . (12)

Hence for the triplet state, the energy levels are

E1,MS
= MS~A+

~2

4
B , with MS = 0,±1 (13)

comprising three lines

E1,1 = ~A+
~2

4
B , (14)

E1,0 =
~2

4
B , (15)

E1,−1 = −~A+
~2

4
B . (16)

For the singlet state, the energy level consists of only one line

E0,0 = −3~2

4
B . (17)

Problem 2. Perturbation Theory
A mass m is attached by a massless rod of length l to a pivot P and swings in a vertical plane
under the influence of gravity, see the figure below.

θ

m

l

P
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a) In the small angle approximation find the energy levels of the system.

Solution

We take the equilibrium position of the point mass as the zero point of potential energy.
For small angle approximation, the potential energy of the system is

V = mgl (1 − cos θ) ≈ 1
2
mglθ2 , (18)

and the Hamiltonian is

H =
1
2
ml2

(
dθ

dt

)2

+
1
2
mglθ2 . (19)

By comparing it with the one-dimensional harmonic oscillator (θ → x/l), we obtain the
energy levels of the system

En =
(
n+

1
2

)
~ω (20)

where ω =
√
g/l.

b) Find the lowest order correction to the ground state energy resulting from the inaccuracy
of the small angle approximation.

Solution

The perturbation Hamiltonian is

H ′ = mgl(1− cos θ) − 1
2
mglθ2 (21)

= − 1
24
mglθ4 = − 1

24
mg

l3
x4 , (22)

where x = lθ. The ground state wave function for a harmonic oscillator is

ψ0 =
(mω

~π

)1/4
exp−1

2
mω

~
x2 . (23)

The lowest order correction to the ground state energy resulting from the inaccuracy of
the samll angle approximation is

E ′ = 〈0|H ′|0〉 = − 1
24
mg

l3
〈0|x4|0〉 . (24)

Using

〈0|x4|0〉 =
(mω

~π

)1/2
∫ ∞

−∞
dxx4 exp−mω

~
x2 , (25)

=
3
4

(mω
~π

)−1
(26)

we find

E′ = − ~2

32ml2
. (27)
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Problem 3. Variational Method
An idealized ping pong ball of mass m is bouncing in its ground state on a recoilless table in
a one-dimensional world with only a vertical direction.

a) Prove that the energy depends on the mass m, the constant of gravity g, and Planck’s
constant h according to ε = Kmg(m2g/h2)α and determine α.

Solution

The kinetic energy is

Hk = − ~2

2m
d2

dx2
(28)

and the potential energy is (origin at the table)

V = mgx . (29)

We assume that we measure the coordinate in a length scale l. We then find that the
energy scales satisfy the scaling relation

ε ∝ ~2

m

1
l2

∝ mgl (30)

which means that

l3 ∝ m2g

~2
(31)

so that we can write the energy as

ε ∝ mg

(
m2g

~2

)−1/3

. (32)

The constant is thus α = −1/3.

b) Give arguments for why a good guess for a trial function for the ground state energy is

ψ(x) = x exp−λx2/2 , (33)

where λ is a variational parameter.

Solution

In the ground state, it is reasonable to assume that the particle is located close to the
table since a classical particle in its lowest energy state will be localized at x = 0. We also
know that the wave function must vanish at x = 0 because the table is impenetrable. A
reasonable trial function that satisfies these two criteria is of the form ψ(x) = x exp−λx2

since
ψ(x = 0) = 0 (34)

and
ψ(x→ ∞) = 0 . (35)

The latter condition ensures that the particle cannot be too far off the table and that
the norm of the wave function is finite.
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c) By a variational method estimate the constant K for the ground state energy.

Solution

The Hamiltonian is
H = Hk + V . (36)

ψ(x) = x exp−λx2/2 . (37)

Consider

〈H〉H =

∫ ∞
0 dxψ∗Hψ∫ ∞
0 dxψ∗ψ

(38)

The norm is
∫ ∞

0
dxψ∗ψ =

∫ ∞

0
dxx2 exp−λx2 (39)

= − d

dλ

∫ ∞

0
dx exp−λx2 (40)

= − d

dλ

1
2

√
π

λ
(41)

=
1
4
√
πλ−3/2 . (42)

We use

d2

dx2
ψ(x) =

d2

dx2
x exp−λx2/2 (43)

=
d

dx

(
1− λx2

)
exp−λx2/2 (44)

=
(
−3λx+ λ2x3

)
exp−λx2/2 (45)

The kinetic energy term is
∫ ∞

0
dxHkψ

∗ψ =
∫ ∞

0
dxψ∗(x)

(
− ~2

2m
d2

dx2

)
ψ(x) (46)

= − ~2

2m

∫ ∞

0

dx
(
−3λx2 + λ2x4

)
exp−λx2 (47)

= − ~2

2m

∫ ∞

0
dx

(
3λ

d

dλ
+ λ2 d

2

dλ2

)
exp−λx2 (48)

= − ~2

2m

(
3λ

d

dλ
+ λ2 d

2

dλ2

)
1
2

√
π

λ
(49)

=
~2

2m
3
8
√
πλ−1/2 . (50)
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The potential energy term is

∫ ∞

0
dxV ψ∗ψ = mg

∫ ∞

0
dxx3 exp−λx2 (51)

= −mg d
dλ

∫ ∞

0
dxx exp−λx2 (52)

= −mg d
dλ

1
2λ

(53)

= mg
1

2λ2 . (54)

We thus find that

〈H〉 =
3~2

4m
λ+

2mg
√
πλ1/2

. (55)

To minimize 〈H〉, we use

d

dλ
〈H〉 =

3~2

4m
− mg√

π
λ−3/2 = 0 , (56)

which gives

λ =
(

4m2g

3~2
√
π

)2/3

. (57)

The approximate ground state energy is then

〈H〉 = 3
(

3
4π

)1/3

mg

(
m2g

~2

)−1/3

(58)

or, in other words, the constant

K = 3
(

3
4π

)1/3

. (59)

Problem 4. Motion in Electromagnetic Field
The Hamiltonian for a spinless charged particle in a magnetic field is

Ĥ =
1

2m

(
p̂− e

c
A

)2
, (60)

where m is the electron mass, p̂ is the momentum operator, and A is related to the magnetic
field by

B = ∇×A . (61)

a) Show that the gauge transformation A(r) → A(r)+∇f(r) is equivalent to multiplying
the wave function by a factor exp ief(r)/(~c). What is the significance of this result?

Solution

The Schrödinger equation is

1
2m

(
p̂− e

c
A

)2
ψ(r) = Eψ(r) . (62)
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Suppose we make the transformation

A(r) → A′(r) = A(r) + ∇f(r) (63)
ψ(r) → ψ′(r) = ψ(r) exp ief(r)/(~c) , (64)

and consider
(
p̂− e

c
A′

)
ψ′(r) = p̂ψ′(r)−

[e
c
A +

e

c
∇f(r)

]
exp

[
ie

~c
f(r)

]
ψ(r) (65)

= exp
[
ie

~c
f(r)

](
p̂− e

c
A

)
ψ(r) (66)

(
p̂− e

c
A′

)2
ψ′(r) = exp

[
ie

~c
f(r)

](
p̂− e

c
A

)2
ψ(r) (67)

where we have used

p̂ψ′(r) =
~
i
∇

{
exp

[
ie

~c
f(r)

]
ψ(r)

}
(68)

= exp
[
ie

~c
f(r)

] [e
c
∇f(r) + p̂

]
ψ(r) . (69)

Substitution in the Schrödinger equation gives

1
2m

(
p̂− e

c
A′

)2
ψ′(r) = Eψ′(r) . (70)

This shows that under the gauge transformation A′ = A+∇f , the Schrödinger equation
remains the same and that there is only a phase difference between the original and the
new wave functions. Thus the systm has gauge invariance.

b) Consider the case of a uniform field B directed along the z-axis. Show that the energy
levels can be written as

E =
(
n+

1
2

)
|e|~
mc

B +
~2k2

z

2m
, (71)

where n = 0, 1, 2, . . . is a discrete quantum number and ~kz is the (continous) momentum
in the z-direction.

Discuss the qualitative features of the wave functions.

Hint: Use the gauge where Ax = −By, Ay = Az = 0.

Solution

We consider the case of a uniform magnetic field B = ∇×A = Bez , for which we have
Ax = −By and Ay = Az = 0. The Hamiltonian can be written as

Ĥ =
1

2m

[(
p̂x +

eB

c
y

)2

+ p̂2
y + p̂2

z

]
(72)

Since [p̂x, Ĥ] = [p̂z, Ĥ] = 0 as Ĥ does not depend on x, z explicitly, we may choose the
complete set of mechanical variables (px, pz). The corresponding eigenstate is

ψ(x, y, z) = exp i(pxx+ pzz)/~χ(y) . (73)
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Substituting it into the Schrödinger equation, we have

1
2m

[(
px +

eB

c
y

)2

− ~2 ∂
2

∂y2
+ p2

z

]
χ(y) = Eχ(y) . (74)

Let cpx/eB = −y0. Then the above equation becomes

− ~2

2m
χ′′ +

m

2

(
eB

mc

)2

(y − y0)
2 χ =

(
E − p2

z

2m

)
χ , (75)

which is the equation of motion of a harmonic oscillator. Hence the energy levels are

E =
~2k2

z

2m
+

(
n +

1
2

)
~
|e|~
mc

, (76)

where n = 0, 1, 2, . . ., kz = pz/~, and the wave functions are

ψpxpzn(x, y, z) = exp i(pxx + pzz)/~χn(y − y0) , (77)

where χn(y−y0) are the eigenstates for the harmonic oscillator, e.g. products of quadratic
exponentials and Hermite polynomials. As the expressions for the energy does not de-
pend on px and pz excplitily, there are infinite degeneracies with respect to px and
pz .
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The following information might be useful in solving the problem in this exam:

a) The Hamiltonian for a one-dimensional harmonic oscillator is

H = − ~2

2m
d2

dx2
+

1
2
mω2x2 , (78)

where x is the position, m is the mass, and ω is the oscillator frequency. The energy
levels are

En =
(
n+

1
2

)
~ω . (79)

The ground state wave function for a harmonic oscillator is

ψ0 =
(mω

~π

)1/4
exp−1

2
mω

~
x2 . (80)

b) The integral ∫ ∞

0
dx exp−λx2 =

1
2

√
π

λ
. (81)


