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Problem 1. Cold Fermi gases

The grand canonical partition function Θ for an ideal Fermi gas can be expressed in the form

ln Θ = V g

∫
d3k

(2π)3
ln
[
1 + e−β(εk−µ)

]
. (1)

a) What are β and µ? How is Θ identified with thermodynamical properties?

β = (kBT )−1 is a convenient measure of temperature (with dimension inverse energy). µ is
the chemical potential (with dimension energy). The thermodynamic identification is

Θ = eβPV , (2)

where P is pressure and V is volume.

Remark: It was surprising to note how many identified Θ wrong.

b) What is g? Does there exist physical systems where one may set g = 1?

g is the degeneracy factor which counts how many internal states (typically spin states) the
particle can be in for each momentum and/or position.

Since equation (1) is the partition function for gas of fermions, and all fermions must have
half-integer spin (hence an even number of internal states), it becomes difficult to realize a
physical system with g = 1. Hence, an accepted short answer is ”no”.

Remark 1: In principle it is physically possible to impose a system of fermions with magnetic moment
to a very strong magnetic field, so that only the (say) spin-up states contribute to the partition function.
For charged fermions this would at the same time distort the energy levels to a form which does not fit to
equation (1), but for neutral particles the distorted levels could still fit. By finding a neutral atom with a
large magnetic moment, and exerting it to a very strong magnetic field and very low temperature it might
be possible to make a system which is well described by equation (1) with g = 1. Hence, a longer answer is
”probably yes”.

Remark 2: The above illustrates that impossibility proofs in the physical sciences may often be circumvented.
In fact, the Nobel Prize in Chemistry for 2014 was given for circumventing an impossibility proof. On the
other hand, countless attempts to circumvent the second law of thermodynamics have failed.

Remark 3: In the extension of electronics to spintronics one actually consider a system of electrons as
consisting of two species, electrons with spin-up and electrons with spin-down. Each species can be described
by a distribution corresponding to (1) with g = 1, but where both species contributes to the partition function.

Remark 4: Many seemed to interprete this question in a very broad sense. However, equation (1) is only

valid for fermions; in addition the problem context is spelled out explictly in the title.
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c) What is εk? What is the form of εk for relativistic particles with mass?

εk is the energy of a particle with momentum p = ~k. For relativistic free particles

εk =
√

(~ck)2 + (mc2)2 ≈

{
mc2 + ~2

2mk2, for ~|k| � mc,

~c|k|, for ~|k| � mc.
(3)

d) Find (or write down) an integral expression for the particle density ρ = N/V of this system.

Sketch how the integrand of this expression varies with εk. Assume that µ is positive and large; indicate in

particular the limits β(εk − µ)� −1 and β(εk − µ)� 1.

ρ =
N

V
=

1

βV

(
∂ ln Θ

∂µ

)
β,V

= g

∫
d3k

(2π)3
1

eβ(εk−µ) + 1
≡ g

∫
d3k

(2π)3
〈nk〉. (4)

Here 0 ≤ 〈nk〉 ≤ 1 is the average number of particles in the one-particle mode k. The
integrand, which is called the Fermi function, is plotted in Figure 1.
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Figure 1: The Fermi function displays, in terms of scaled variables, the mean occuption of
single-particle states in a system of non-interacting fermions

e) Find (or write down) an integral expression for the energy density E/V of this system.

E

V
= g

∫
d3k

(2π)3
εk〈nk〉 = g

∫
d3k

(2π)3
εk

eβ(εk−µ) + 1
. (5)

Remark: A common mistake here is to use an expression valid for the canonical ensemble,

E = −
∂

∂β
lnZ.
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This is not correct for the grand canonical ensemble. The brief calculation above is based on physical
interpretation or intuition (which may often be a shaky foundation). A thermodynamic derivation is to start
with the relation

PV = µN + TS − E (6)

(which holds because µN = G = E + PV − TS), and rewrite the thermodynamic identity as

V dP = Ndµ+ SdT. (7)

It follows from this that TS = T
(
∂
∂T
PV
)
µ,V

= −β
(
∂
∂β
PV
)
µ,V

and µN = µ
(
∂
∂µ
PV
)
β,V

. Hence

E = µN + TS − PV = µ

(
∂βPV

β∂µ

)
β,V

−
(
∂βPV

∂β

)
µ,V

. (8)

Application of this formula to βPV = ln Θ leads to the result (5), after which we may safely refer to our

magnificient physical intuition.

Assume now that we may make the approximation εk − µ ≈ ~2
2m

k2 − µNR, and that the temperature may be set to

zero.

f) Find the connection between µNR (in this case also denoted the Fermi energy EF ) and the particle density

ρ.

It may be instructive to first plot the Fermi function as function of ε for a fixed temperature
T , and investigate how the shape changes as we vary T . This is shown in figure 2.
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Figure 2: The Fermi function, as function of scaled energy for various values of scaled temperature.
It becomes a step function at zero temperature.

We see that when kbT/µ � 1 we may set f = 1 when ε < µ, and f = 0 when ε > µ.
Mathematically this can be expressed as

f = θ(kF − |k|), where
~2k2F
2m

= µNR. (9)

It follows that

ρ =
4πg

(2π)3

∫ kF

0

k2 dk =
g

6π2
k3F =

g

6π2

(
2mµNR

~2

)3/2

. (10)
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This is an acceptable answer, but it may be more instructive to find EF in terms of ρ:

EF = µNR(T = 0) =

(
6π2

g

)2/3 ~2

2m
ρ2/3. (11)

g) Show that the answer of the previous point essentially can be found by dimensional analysis (apart for a

numerical factor which must be of order 1):

(i) Which physical parameters can the answer depend on?

(ii) How must these parameters be combined to give an expression of dimension energy?

At T = 0 the only available parameters are the density ρ (with dimension [ρ] = m−3) and
the combination ~2/m (with dimension [~2/m] = kg m2/s2). Thus, we must have

EF ∝ ρx
(
~2

m

)y
for some numerical constants x and y. Since EF is an energy with dimension [EF ] = kg m2/s2,
the only solution is x = 2/3 and y = 1. I.e.,

EF = c(g)
~2

m
ρ2/3, (12)

for some numerical factor c(g). Comparison with equation (11) shows that c(g) ≈ 4.785 for
electrons (g = 2).

h) The number density of free electrons in aluminium is ρ = 2.1 · 1029 m−3. Assume that these electrons can be
treated as an ideal Fermi gas.

What is the Fermi temperature TF (defined by kBTF = EF ) for this material?

Given:

~ = 1.054 · 10−34 kg m2 s−1,

kB = 1.381 · 10−23 kg m2 s−2 K−1,

me = 9.109 · 10−31 kg,

mAl ≈ 4.482 · 10−26 kg.

Here the information about mAl is irrelevant. Insertion of the other parameters into (11)
gives

TF = 149 307 K. (13)

That means that T/TF ≈ 1/50 at room temperature. Like other metals it is not a bad
approximation to consider aluminium at room temperature as a zero temperature system.

Remark: Here the information about mAl is not needed; it was included as a distraction — just like real

life is filled with distractions and false clues.

Problem 2. Frustrated Ising chain
In this problem we consider a closed Ising chain with antiferromagnetic interactions, with an odd number of spins.
We first simplify to the case of three spins. The Hamilton function then becomes

H = J (s0s1 + s1s2 + s2s0) , (14)

where each Ising spin si takes the values ±1, and J > 0.

a) What are the possible energies of this chain, and how many configurations are there for each of these energies?

There are 23 = 8 possible configurations in all
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Configurations Energy

↑↑↑ 3J
↓↓↓ 3J

↓↑↑, ↑↓↑, ↑↑↓ −J
↑↓↓, ↓↑↓, ↓↓↑ −J

I.e., there are 6 configurations with energy −J , and 2 configurations with energy 3J .

b) What is the entropy S of this chain at (i) zero temperature, and (ii) infinite temperature?

At zero temperature only the 6 states of energy −J are equally probable, while the last two
or frozen out:

S = kB ln 6. (15)

At infinite temperature all 8 states are equally probable:

S = kB ln 8. (16)

Remarks: Here candidates were expected to remember the famous formula of Boltzmann, S = kB ln Ω. And
know how to use it: (i) At zero temperature only the ground state is available, and Ω becomes the degeneracy
of the ground state, (ii) at infinite temperature all states of the system are available with equal probability,
and Ω becomes the total number of states (a common misunderstanding is to believe that only the states of
highest energy should be counted at infinite temperature).

Some identify the wrong states with the ground states. Some use the general formula S = (E−F )/T , treating
F and E as temperature independent, to conclude that S = ∞ at T = 0, and S = 0 at T = ∞ (which is
qualitatively exactly the opposite of physical behavior).

Those who calculated the complete entropy expression first, and next took the appropriate limits (and got

these right) were given full score. However, this is a dangerous (hence wrong) and complicated procedure,

with no security net for catching algebraic errors. The limiting behaviors should be computed independently,

and used to check the general expression.

c) Write down the canonical partition function for this chain.

Z = eβJ
(
6 + 2 e−4βJ

)
, (17a)

or
lnZ = βJ + ln 2 + ln

(
3 + e−4βJ

)
(17b)

d) Calculate the mean energy E as function of the temperature parameter β.

E = − ∂

∂β
lnZ = −J +

4J

3 e4βJ + 1
. (18)

Remark: Some mathematically equivalent expressions are

E = 3J

(
e−3βJ − eβJ

e−3βJ + 3eβJ

)
= −3J

(
1− e−4βJ

3 + e−4βJ

)
.

However, since these expressions contain (many) more β-dependent terms, they lead to more cumbersome

calculations of the heat capacity C. It is a good advice to simplify lnZ as much as possible before taking any

derivatives.

e) Calculate the heat capacity C as function of the temperature parameter β.

C

kB
= β2 ∂

2 lnZ

∂β2
= −β2 ∂E

∂β
=

48 · (βJ)2 e4βJ

(3 e4βJ + 1)2
. (19)
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f) What is the behavior of C as (i) T → 0, and (ii) as T →∞?

C

kB
≈ 1

3
(4J/kBT )2 e−4J/kBT as T → 0, (20a)

C

kB
≈ 3 (J/kBT )2 as T →∞. (20b)

Remark 1: With behavior is ment more that just the limiting values (here zero). How these limits are
approached are important aspects of the behavior.

Remark 2: It is a general feature of systems with a lowest energy gap ∆E that the low temperature heat
capacity has the behavior

C

kB
∝
(

∆E

kBT

)2

e−∆E/kBT .

The exact prefactor is g1/g0, where g0 is the degeneracy of the ground state, and g1 the degeneracy of the
first exited state. In this case g0 = 6 and g1 = 2.

Remark 3: It is a general feature of systems whose energies are restricted to a finite range that the high
temperature heat capacity has the behavior

C

kb
∝

1

(kBT )2
.

The exact prefactor is

Var(E) =

∫
dE ρ(E) (E − Ē)2, where Ē =

∫
dE ρ(E)E,

and ρ(E) is the normalized density of states per energy. In this case ρ(E) = 3
4
δ(E + J) + 1

4
δ(E − 3J).

Remark 4: The full temperature behavior of equation (19) is illustrated in figure 3.
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Figure 3: The heat capacity of a 3-site frustrated Ising chain as function of temperature.

g) Calculate the entropy S of this chain as function of the temperature parameter β.

Since lnZ = −βF = −β(E − TS), we find

S

kB
= lnZ + βE = ln 2 + ln(3 + e−4βJ) +

4βJ

3 e4βJ + 1
. (21)
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Remark 1: We see from equation (21) that S/kB = ln 6 when T = 0, and S/kB = ln 8 when β = 0, in
agreement with point b).

Remark 2: The full temperature behavior of equation (21) is illustrated in the figure 4.
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Figure 4: The entropy of a 3-site frustrated Ising chain as function of temperature.

Now add a magnetic field, such that the Hamilton function acquires an additional contribution,

∆H = −µB(s0 + s1 + s2). (22)

h) What are the possible energies of this chain now; and how many configurations are there for each of these

energies?

Configurations Energy

↑↑↑ 3J − 3µB
↓↓↓ 3J + 3µB

↓↑↑, ↑↓↑, ↑↑↓ −J − µB
↑↓↓, ↓↑↓, ↓↓↑ −J + µB

There are 3 configurations with energy −J − µB, 3 configurations with energy −J + µB, one
configuration with energy 3J − 3µB, and one configuration with energy 3J + 3µB.

Remark: Note that the configuration of lowest energy depends on the ratio between J and µB. For

J/(µB) > 1/2 there are 3 lowest energy configurations: ↓↑↑, ↑↓↑, and ↑↑↓. For J/(µB) < 1/2 there is one

lowest energy configuration: ↑↑↑. For J/(µB) = 1 these two possibilities have the same energy, and the lowest

energy configuration is 4-fold degenerate. I.e., there is a zero-temperature phase transition in the system at

µB = 2J .

Finally consider the general case of a chain with 2N + 1 spins.

i) What is the lowest possible energy of the chain, and how many configurations have this energy?

Consider first the case that µB = 0. The lowest energy is obtained when all neighboring
pairs have anti-parallel spins. Unfortunately, for a chain with an odd number 2N + 1 of spins
this is not possible. There must always be at least one neighboring pair with parallel spins.
This is why we call the chain frustrated.
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Only one parallel pair lead to the lowest energy. There are 2N + 1 different choices for this
pair. In addition, the net spin of the chain may be either +1 or −1. Hence, in this case the
lowest energy is

(1− 2N)J, with a degeneracy of 2(2N + 1).

Consider next a small µB > 0. The configurations of lowest energy will now have a net spin
of +1. In this case the lowest energy is

(1− 2N)J − µB, with a degeneracy of (2N + 1).

However, if µB becomes large enough the lowest energy will occur when all spins are pointing
upwards. This unique configuration will have the lowest energy of

(2N + 1)(J − µB).

The (zero temperature phase) transition between the two cases occurs when µB = 2J .

Problem 3. Lattice vibrations

A slightly simplified model for linear lattice vibrations is given by the Hamilton function

H =
1

2M

∑
m

p2
m +

1

2

∑
mn

qmKm,nqn, (23)

where Km,n is a symmetric N ×N matrix with all eigenvalues positive, λj = M ω2
j .

a) What is the classical heat capacity C for this system according to the equipartition principle?

There are N momentum and N position degrees of freedom which are coupled quadratically.
This implies a classical heat capacity

C =
(
1
2N + 1

2N
)
kB = NkB . (24)

Quantum mechanically the system constitutes a collection of N harmonic oscillators, with frequencies ωj defined by
the eigenvalues

S =
{
λj = Mω2

j | j = 0, . . . , N − 1
}
. (25)

To find S numerically for a large system one may use a routine from scipy.sparse.linalg. This requires one to make
a function which performs the operation ψm →

∑
nKm,nψn. The code below shows a one-dimensional example of

such an operation.

1 def K(psi):
2 """Return (-1) times the 1D lattice laplacian of psi."""
3 Kpsi = 2*psi
4 Kpsi -= numpy.roll(psi, 1, axis=0)
5 Kpsi -= numpy.roll(psi,-1, axis=0)
6 return Kpsi/2

b) From the code above one may read out what the explicit expression for
∑
mn qmKm,nqn is in this case. Write

down this expression.

Line 3 in the code initializes (Kψ)m = 2ψm, line 4 subtracts ψm−1 from (Kψ)m, and line 5
subtracts ψm+1 from (Kψ)m. Finally in line 6 the result is reduced by a factor 1

2 .

This means that
(Kψ)m = 1

2 (2ψm − ψm−1 − ψm+1) ,

a lattice version of the second derivative of ψ (it is called the second difference). Therefore,

Km,n = δm,n − 1
2δm−1,n − 1

2δm+1,n,

and

1

2

∑
mn

qmKm,nqn =

N−1∑
m=0

qm (qm − qm+1) . (26)

In all expressions above we count indices modulo N . I.e., ψN+m ≡ ψm, and ψ−m ≡ ψN−m.
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c) Generalize the code above to two- and three-dimensional lattices with corresponding nearest-neighbor

interactions.

In two (three) dimensions the components of ψ and q are naturally described by two (three)
indices, and we should take the second difference in both (all) directions. I.e.,

(Kψ)m,n =
1

2
(4ψm,n − ψm−1,n − ψm+1,n − ψm,n−1 − ψm,n+1)

in two dimensions, and

(Kψ)m,n,p =
1

2

(
6ψm,n,p − ψm−1,n,p − ψm+1,n,p

− ψm,n−1,p − ψm,n+1,p − ψm,n,p−1 − ψm,n,p+1

)
in three dimensions. A routine which works is all dimensions is listed below:

1 def K(psi):
2 """Return (-1) times the lattice laplacian of psi."""
3 Kpsi = numpy.zeros_like(psi) # Allocate space of correct shape
4 for d in range(len(psi.shape)):
5 Kpsi += 2*psi
6 Kpsi -= numpy.roll(psi, 1, axis=d)
7 Kpsi -= numpy.roll(psi,-1, axis=d)
8 return Kpsi/2

Remark 1: In the real world there is an additional complication, due to the fact that a LinearOperator
routine must accept and return one-dimensional arrays. To handle this we must modify the code above

1 def K(psi):
2 """Return (-1) times the lattice laplacian of psi."""
3 psi = numpy.reshape(psi, shape)
4 # Insert previous lines 3-7
5 return numpy.ravel(Kpsi/2)

Here the parameter shape must be defined outside the K-routine.

Remark 2: There are many applications where a routine for the lattice laplacian is needed, but the example
given here is somewhat artificial. The analytic eigenvalues of K is easy to find: If shape = (n0, n1, n2),

λj0,j1,j2 = 2 sin2
(
πj0
n0

)
+ 2 sin2

(
πj1
n1

)
+ 2 sin2

(
πj2
n2

)
, (27)

where j0 = 0, 1, . . . , n0− 1 etc.

For a large lattice the frequencies will be very close, and are best described by a function ρ(ω), the density of states.
Numerically we may construct such a density through a histogram. The code below is an example of how this can
be done (taken from a slightly different situation).

1 def makeHistogram(data, dmin, dmax, nbins):
2 """Return a histogram of the contents in data."""
3 bins = numpy.linspace(dmin, dmax, nbins+1)
4 return numpy.histogram(data, bins=bins)

d) Modify the code above to the calculation of ρ(ω), under the assumption that data contains the set S of

eigenvalues.

Since data is assumed to consists of the eigenvalues of K, we must first convert this information
to frequencies. This requires knowledge of M, which can be given as a parameter to the
routine (or a global variable). We take it to be a parameter with a default value, leading to
the code

1 def makeHistogram(data, fmin, fmax, nbins, M=1):
2 """Return a histogram of the frequency distribution."""
3 freqs = numpy.sqrt(data/M)
4 bins = numpy.linspace(fmin, fmax, nbins+1)
5 return numpy.histogram(freqs, bins=bins)
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Remark: For comparison with f.i. analytic estimates it can be useful to scale the histogram so that it
resembles the continuum distribution ρ(ω), normalized to

∫
dω ρ(ω) = 1. This is achieved by an addition

after line 3 above:

freqs /= numpy.sum(freqs) * (bins[1] - bins[0])

Here the division by ∆ω = (bins[1] - bins[0]) takes into account that the relative number h(ω) of frequencies

in a bin of width ∆ω around ω is related to the frequency distribution by h(ω) = ρ(ω)∆ω.

e) Assume that S consists of 10 000 eigenvalues in the interval between 0 and 10. Which values would you

choose for the parameters fmin, fmax and nbins?

We could choose fmin = 0 and fmax = numpy.sqrt(10/M). An optimal choice of nbins may
require some amount of experimentation before obtaining a smooth curve, but nbins = 200
is a reasonable first choice.

Remark: In some cases, when f.i. running simulations or finding computing eigenvalues of a very large sparse

matrix, it may be very time and memory consuming to produce data for a histogram, while manipulation of

the histogram itself will require few resources. It such cases it is better to err on the safe side by covering a

larger interval than the expected outcomes, and using many more bins than expected necessary. It is simple

to throw away unpopulated bins, and to combine results from several bins into one. It is difficult to go the

other way.


