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NORGES TEKNISK-
NATURVITENSKAPELIGE UNIVERSITET
INSTITUTT FOR FYSIKK

Contact during the exam:
Jon Andreas Støvneng
Phone: 73 59 36 63 / 45 45 55 33

EXAM
TFY4340 MESOSCOPIC PHYSICS
Wednesday May 18 2011, 0900 - 1300

English

Remedies: C

• K. Rottmann: Mathematical formulae

• Approved calculator with empty memory (Citizen SR-270X, HP30S, or similar).

Pages 2 – 6: Questions 1 – 4. The four questions are relatively unrelated and may be an-
swered in any order. Also, many of the subquestions within a given question may be answered
independently from the others.

Notation: Vectors are given in bold italic. Unit vectors are given with a hat above the symbol.

Some constants:
Electron mass: me = 9.1 · 10−31 kg. Elementary charge: e = 1.6 · 10−19 C.
Boltzmann constant: kB = 1.38 · 10−23 J/K. Planck constant: h̄ = h/2π = 1.05 · 10−34 Js.

The grades will be available around May 27.
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QUESTION 1

Graphene is a single 2D layer of graphite, i.e., a honeycomb lattice of carbon atoms with nearest
neighbour distance a ≃ 1.4 Å. The primitive cell consists of two C atoms. The reciprocal lattice
is triangular, hence, the first Brillouin zone (1BZ) is hexagonal.
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Primitive vectors a1 and a2, primitive vectors b1 and b2 in reciprocal space (with |b1| = |b2| =
4π/3a), as well as the hexagonal 1BZ are shown in the figure.

Within the LCAO approximation (”Linear Combination of Atomic Orbitals”), the 2s, 2px, and
2py orbitals of the two C atoms are responsible for the strong C-C bonds, in terms of hybridized
sp2 states and corresponding energy bands. For electronic transport at low temperatures, how-
ever, the energy bands of interest arise from the coupling between 2pz orbitals on neighbouring
C atoms. Within the nearest neighbour tight binding approximation, the resulting valence band
(bonding π band) and conduction band (anti-bonding π∗ band) are described by the dispersion
relation

E±(k) = E0 ± |γ|
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Here, γ is the nearest neighbour transfer integral,

γ = 〈2pA
z |∆V |2pB

z 〉 < 0,

i.e., the matrix element of the perturbation ∆V = H −Ha, and |2pA
z 〉 and |2pB

z 〉 are eigenstates
of the atomic hamiltonian Ha, for nearest neighbour carbon atoms A and B. (E0 is an ”unin-
teresting” constant.)

a) The top of the valence band, E−(k), and the bottom of the conduction band, E+(k), are both
located at the corners of the 1BZ. Use this information to calculate the bandgap of graphene.

b) The low temperature electronic excitations in graphene are often refered to as ”massless
relativistic particles” (or ”massless Dirac fermions”). Justify this expression and calculate the
velocity of these particles, assuming a value of 2 eV for the transfer integral |γ|.
Hint: Feel free to choose a particular direction around a particular corner of the 1BZ.

Relativistic energy: E2 = p2c2 + m2c4.
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QUESTION 2

The figure to the left [Baibich et al, Phys Rev Lett 61, 2472 (1988)] illustrates the so-called
”giant magnetoresistance” effect (GMR), where the application of a magnetic field H to a
structure of alternating layers of ferromagnetic iron and nonmagnetic chromium (actually, a
superlattice of forty Fe/Cr layers) results in a reduction in the resistance R when compared with
the zero field resistance R(H = 0). Here, the reduction is about 45 % when the applied field
is larger than the saturation field Hs. An explanation of the observed GMR effect - in terms
of the so-called two-current model for the conduction in ferromagnetic metals - is suggested in
the figure to the right [Chappert et al, Nature Materials 6, 813 (2007)]. In the upper figure,
H = 0, and an antiferromagnetic coupling between the magnetic iron layers F1 and F2 yields
antiparallel magnetizations M 1 and M 2 (black arrows). In the lower figure, H > Hs, and M 1

and M 2 are both aligned with the external field H .
Let R+ and R−, with R+ > R−, denote the ferromagnetic layer resistances experienced by elec-
trons that have their spin aligned parallel and antiparallel, respectively, with the magnetization.
Assume that the resistance of the nonmagnetic chromium layer (M) is negligible.
Derive expressions for R(H = 0) and R(H > Hs). Estimate a value for the ratio R+/R− in the
experiment by Baibich et al.
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QUESTION 3
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a) Explain briefly how the symmetric double potential energy barrier structure (DBS) in the
figure above is related to the electronic band structure of semiconductor materials, e.g., GaAs
and AlxGa1−xAs (with x ≃ 0.3).

An electron coming in from the left (S = ”source”; D = ”drain”) with energy E = h̄2k2/2m
can be described by a plane wave exp(ikx) (k > 0). The DBS energy barrier height is V0,
the barrier width is d, and the well width is L. For a single barrier structure (SBS) located
at 0 < x < d, the transmitted wave is t exp(ikx) and the reflected wave is r exp(−ikx), with
transmission and reflection amplitude

t = e−ikd

(

cosh κd + i
δ

2
sinh κd

)−1

,

r = −i
σ

2
eikdt sinh κd.

Here, κ =
√

2m(V0 − E)/h̄, σ = κ/k + k/κ, and δ = κ/k − k/κ.

b) For the SBS, use these expressions to show that the reflection probability R = |r|2 and the
transmission probability T = |t|2 are, to leading order when E ≪ V0 and κd ≫ 1,

R ≃ 1

T ≃ 16k2

κ2
e−2κd.

We may call this the ”opaque” barrier limit. (Of course, R + T = 1.)

c) For the DBS, use the notion of Feynman paths (or, if you like, the analogy to interference
in optics; see figure below) to show that the transmission amplitude tSD (from ”source” S to
”drain” D) is

tSD =
t2eikL

1 − r2e2ikL
.

+ + · · ·
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d) For opaque barriers (see b), the phase of the reflection amplitude is approximately −π, i.e.,
r ≃ −|r|. Then, show that resonant tunneling (i.e., TSD = |tSD|2 = 1) takes place for electron
energies corresponding to standing waves in the well between the two barriers.

e) Show - with qualitative arguments - how the current-voltage curve I(V ) of such a DBS may
possess a region of negative differential resistance, (dI/dV )−1 < 0. Use figures.

QUESTION 4
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The figure above shows a 5-terminal device with ideal contacts, for measurement of the Hall
resistance RH and the longitudinal resistance RL. A relatively strong uniform magnetic field
B is applied perpendicular to the 2DEG and points out of the plane.

The Büttiker–Landauer equations,

Iα =
∑

β 6=α

Gαβ (Vα − Vβ) ,

with conductances

Gαβ =
2e2

h
Tαβ,

relate the current in terminal α to the potentials at the various terminals. Here, Tαβ denotes
the ”direct transmission sum” from terminal β to terminal α. A small voltage V = V1 − V4

is applied between terminals 1 and 4, resulting in a net current I flowing from terminal 1 to
terminal 4 (i.e., I1 = −I4 = I > 0). Terminals 2, 3, and 5 are used as voltage probes.

a) Use classical physics to argue that the net current through the system is carried by electrons
located near the two edges (upper and lower) of the 2DEG. Draw electron orbits, both near
and far from the edges of the 2DEG.
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b) Assume N states are present near each edge of the 2DEG at the Fermi level. Use your ideas
from a) to argue why e.g. T43 = N whereas e.g. T52 = 0. Write down all the non-zero elements
Tαβ of the transmission matrix.

c) Find the Hall resistance RH = R14,25 and the longitudinal resistance RL = R14,23. (Notation:
Rαβ,κη = (Vκ − Vη)/I, I = Iα = −Iβ , Iκ = Iη = 0.) For convenience, you may choose V4 = 0.

d) The figure below is taken from D. C. Tsui and A. C. Gossard, Appl Phys Lett 38, 550
(1981), and shows an example of experimental curves for the longitudinal resistivity

ρxx(B) =
Ex

jx

and the Hall resistivity

ρxy(B) =
Ey

jx

for a similar device. Discuss your results in c) - both similarities and discrepancies - in view of
these experiments.
(As a hint, some keywords: Landau levels, Hall plateaus, Shubnikov - de Haas oscillations,
disorder, back-scattering.)


