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FY8201 / TFY8 Nanoparticle and polymer physics I

SOLUTION of EXERCISE 1

Eq. (x.x) refers to version AM24nov05 of lecture notes: “Nanoparticle and polymer physics”.
Equations pertinent to this exercise you will find in Ch. 2.3.

A) The Rouse chain consists of N segments (beads) connected by N −1 segment vectors (springs).
We assume that 1) there are no other forces than the spring force, 2) the end beads are free, 3) all
springs obey Hooke’s law with Hooke’s constant H . Relative to the laboratory coordinate system
the position of bead ν is rν (ν = 1, 2, . . .N ), and we define r0 = r1 and rN+1 = rN . Note that for
the one-dimensional chain the coordinates rν are scalars and not vectors.

Newtons law for bead no. ν reads:

mr̈ν = H · [(rν+1 − rν) − (rν − rν−1)] (1)

We change the coordinate system from the laboratory system to cm-system with origo in the center
of mass rcm =

∑N
ν=1 rν/N . The coordinates in cm-system then aren Rν = rν − rcm and Eq. (1)

transforms to

mR̈ν = H · [(Rν+1 − Rν) − (Rν − Rν−1)] = H · [Rν+1 − 2Rν + Rν−1] , (2)

or on vector form

m�̈R = −H ·
⇒
A

′
·�R, where

⇒
A

′
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

−1 2 −1
.. .

−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

Note that matrix
⇒
A

′
is not the Rouse matrix. Also note that in this one-dimensional chain the

components of the vector �R = [R1, R2, . . . , RN ] are scalars, but for a three-dimensional chain the
components are vectors.

The essence now is to rewrite Eq. (2) to be expressed by the segment vectors Qν = Rν+1−Rν (ν =
1, 2, . . .(N − 1)). From the above defined r0 = r1 and rN+1 = rN follows Q0 = 0 and QN = 0, and
we obtain

mQ̈ν = H · [Qν+1 + Qν−1 − 2Qν] , (4)

or on vector form

m�̈Q = −H ·
⇒
A · �Q, where

⇒
A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

−1 2 −1
. . .

−1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Now the (N − 1) × (N − 1)-matrix
⇒
A is precisely the Rouse-matrix, see Eq. (2.46). We have thus

easily obtained the Rouse matrix from Newtons law using the relative coordinates �Q.

B) Let ε = |Q| be the length of each segment. In the limit N → ∞ the length L = Nε of the chain
must be kept constant, so ε → 0. It is thus natural to expand in a series in ε. Coordinate x is used
as space coordinate:

Rν ≡ R(x), Rν±1 ≡ R(x± ε). (6)

Taylor expansion to fourth order yields

Rν±1 = R(x ± ε) = R(x)± ∂R

∂x
ε +

1
2

∂2R

∂x2
ε2 ± 1

6
∂3R

∂x3
ε3 +

1
24

∂4R

∂x4
ε4 + · · · (7)
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Using this, Eq. (2) may be expressed

m
∂2R

∂t2
= Hε2 ·

[
∂2R

∂x2
+

ε2

12
∂4R

∂x4
+ · · ·

]
. (8)

In the limit ε → 0 we obtain the wave equation of zeroth order with the wave velocity c given by
c2 = Hε2/m:

∂2R

∂t2
=

Hε2

m
· ∂2R

∂x2
. (9)

C) In the continuous case (N → ∞) the eigenvectors of the Rouse matrix are trivial. A vibrating
rod has the quantization properties (standing wave in the rod with fixed endpoints: a whole number
of λ/2 along the rod):

j
λ

2
= L, j = 1, 2, . . . . (10)

The eigenvalues of the matrix
⇒
A are given by

⇒
A · �Q = aj

�Q. From Eq. (5) and using the continuous
standing wave solution Q ∝ exp{i(ωt− kx)} we obtain

⇒
A �Q = −m

H
�̈Q =

m

H
ω2 �Q. (11)

Further, using the relation c2 = Hε2/m, expressing the wave velocity c = λ ω
2π , using Eq. (10) and

ε = L/N , the eigenvalues aj can be expressed

aj =
m

H
ω2 = ε2

(
ω

c

)2

= ε2
(

2π

λ

)2

=
π2j2

N 2
. (12)

This is precisely the same as obtained taking the limit N → ∞ of the eigenvalues of the Rouse
matrix in the discrete case: Holding L constant we obtain for the Rouse eigenvalues:

aj = lim
N→∞

4 · sin2
(

jπ

2N

)
= lim

ε→0
4 · sin2

(
jπε

2L

)
=

π2j2ε2

L2
=

π2j2

N 2
. (13)

D) In the discrete case (finite N ) the most direct method would be to find the N eigenvalues by
zeroing the determinant of the equation, but we do an alternative approach.

The eigenvalues represent the characteristic resonance modes. Each resonance mode j = 1, 2, 3, · · ·
is a longitudinal standing wave where all beads oscillate with the same frequency ωj but different
phases. A standing wave in a chain of length L may be represented by

fj(x, t) = A sin
(

2π

2L
j · x

)
· cos ωjt. (14)

The function is fulfilling the end constriction fj(0, t) = fj(L, t) = 0, c.f. Eq. (10). For our discrete
chain the position x is given by bead number ν and L → N = total no. of beads. The function
fj(x, t) is represented by connector Qν (should strictly be denoted Qν,j = connector Qν in mode
j), given by

Qν = A sin
(

2π

2N
j · ν

)
· cosωjt. (15)

Using complex notation: sin φ = 1
2i(e

iφ − e−iφ) and for simplicity defining n = 2π
2N j, we obtain

Qν = B
[
einν − e−inν

]
eiωnt. (16)

Inserting this expression in Eq. (4), we obtain:

mQ̈ν = H · [Qν+1 + Qν−1 − 2Qν ]

m(−ω2
n)(einν − e−inν ) = H

[
(ei(ν+1)n − e−i(ν+1)n) + (ei(ν−1)n − e−i(ν−1)n) − 2(eiνn − e−iνn)

]

−mω2
n

H
(einν − e−inν ) = eiνn(ein + e−in) − e−iνn(ein + e−in) − 2(eiνn − e−iνn)

−an(einν − e−inν ) = (eiνn − e−iνn)(ein + e−in) − 2(eiνn − e−iνn)
−an = (ein + e−in) − 2 , (17)
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where we have defined an = mω2
n

H , determined to be

an = 2 − (ein + e−in) = 2 − 2 cos(in) = 4
1− cos(in)

2
= 4 sin2

(
n

2

)
, (18)

or, more directly

an = −(ein − 2 + e−in) = −
(
ein/2 + e−in/2

)2
= 4

(
ein/2 + e−in/2

2i

)2

= 4 sin2
(

n

2

)
. (19)

Now n = 2π
2N j and the conclusion is that the eigenvalues of the Rouse matrix fulfills

aj = 4 sin2
(

jπ

2N

)

Comments:

1) Note that the for the continous vibration we do not accept dispertion: After disturbing the
system all frequency components will move with the same velocity c = ε

√
H/m. This is not

the case for the discrete case, then the wave velocity equals ωn/k where ω2 = H
m sin2

(
jπ
2N

)
. The

continuous limit corresponds to limiting to the linear part of the dispertion relation of the rod: We
study waves with wavelengths much larger than the distance ε.

2) You may perhaps not like that the wave velocity c2 = ε2H/m seems to diverge to zero when
ε → 0. Remember that the mass and the spring constant are given by m = λε and H = F/ε,
where λ is mass per length unit and F is the force (stretch) of the spring. From these variables we
obtain c2 = F/λ, as for a ”macroscopic” spring.

3) Both free and constricted boundary conditions yield the same quantization conditions for the
finite chain, and the same eigenvalues of the Rouse matrix. For constricted ends the amplitudes are
zero at the ends, but for free ends the relative amplitudes are zero at the ends. When additionally
the differential equation is the same for the amplitude and the relative amplitude, we surely obtain
the same quantization conditions. (For periodic boundary conditions it is somewhat different, as
the eigenfrequency has doble degeneration.)
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