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FY8201 / TFY8 Nanoparticle and polymer physics I
SOLUTION of EXERCISE 3

)

Eq. (x.z) refers to version AM24nov05 of lecture notes: “Nanoparticle and polymer physics”.

A) The segment length @ = 10 nm. Note: Ny = 100 segments means N = Ny + 1 = 101.
i) Contour length: L(®) = (N — 1)Q = 100 x 10 nm = 1000 nm = 1,0 pm

ii) Average end-to-end vector:
(Ran) :/RIN p*V(Rin) dRiy
where (Eq. (2.93))

€Oy )d R 3 Vv 3N gedya
IR R (i) P - i)

Because of the symmetry of p(¢? integration from —oo to oo yields

(Riy) = 0

iii) Average end-to-end distance:
(Ran) :/0 Ry p°Y(Rin) dRin

where (e.g. from “Molekyleer biofysikk” Eq. (7.29) or “Bionanoparticle physics”, Eq. (6.3-29))
3 3/2 3R?
(eq) Sy » Y N LU qR v
P ()R = dmRiy (%(N - 1)Q2> eXp{ 2(N —1)Q? N

From tables: o . ) )
/ rexp{—Ar‘} =\"7/2
0

which yields

<R1N>:\/§~\/N—1~Q:92nm

iv) Average quadratic end-to-end distance.

<R%N> = /R%N p(eq)(R1N> dRiN

3 3/2 3R3y =
- /R%N (%(N - 1)Q2> P {_Q(N ~1)Q? } —

With d Riny= 47TR%NdR1N (spherical symmetry) and integration from Ry = 0 to oo we obtain,
using tables:

(R2\) = (N —1) Q*=100x 10> nm? = 10000 nm* = /(R?y) =100 nm

R?,) can also be calculated alternatively:
1N

<R%N> — 2%002}00<Qi . Q]> — 2%002}005” i Q2 =100 - Q2
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v) Maximal stretch ratio:
L© 1000 nm

= — 1_
(R2,) 100 nm
vi) Radius of gyration (Eq. (2.152):
N2 -1 IN+1 1 102
G2\  _ 2 _ 2V T /2 _ 1 102 2 _ )
<R >eq 6N Q 6 N <R1N>eq 6 101 10000 nm 1683 nm

= <R(G)2>eq = 41 nm

vi) Spring stiffness (spring constant) when changing the end-to-end distance of the
molecule:

F 3kpT
k g —_ = —-— 1
[ RiN (N -1)Q? (1)
—923
_ 3x1.38x10 Nm/deg x 300 deg ~12x10°% N/m
100 x 100 nm?2
B)
1 2 3 o~ o Vo
/1 ™ ——
G \,-—/@*’ ,
oo} — "‘|

i) The Helmholtz free energy of each spring:
A=U —T -8 =ks/2 (I = lmax/2)* = 0
This yields the average force between end points of the polymer
dA dF

F = 5 = —ks - (I — lmax/2) ie. spring constant = = ks

ii) When the potential equals Us the entropy of the spring determines the spring stiffness. The
entropy S(L) as function of the end-to-end distance L is calculated through A(L) = Uy —T-S(L) =

0—T-8(L)

The function p(eq)(L) is the probability to find the end-to-end distance of the chain, L, within a
certain length:

l max

[ TR = S ap)aea
peor) = —

lII]aX
[ [ dNsg
0
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where d(y) is Diracs delta function and Ny = no. of segments = 100. The delta function is on
integral form expressed

1 [+ )
iy) = %/_ exp{iys}ds

Inserted in expression for p(¢® this yields

(eq) 1 Imax 1 +oo ) N N,
OIS A A BN KU SR L

1 +o0o Imax Ns
= / exp{iLs} / exp{—iz - s}dx| ds
- 0

2 ZIJXQX 0

where we have assumed that the distribution of all segments are equal. We have also used the
relation

N, N,
exp{—iZa:js} = H exp{—izjs} = [exp{—izs}]"*
j=1 j=1

Further calculations yield

lmax 1
/ exp{—izstdr = —[1 — exp{—ilmaxs}]|
0 is
1 { - lmax } |: { - lmax } { - lmax S}
= — —1 s} |exp{i——s} — exp{—i
is PV PUT Py
2 lm X . lm X
= exp{—i 2a s}sin 2a s
lmax - Sin bnax
= Imax exp{—i—ors}——2
Inserted in expression of p(¢¥ this yields
N,
1 [t ) Imax sin 4“5 xg\ °
p(L) = o | P {Z(L — N, 5 )s} ( Do 5 ds
. NS . .
sin xs sinzs , ) sinzs
( > = exp {N s In [ ] } <ser1es expansion of >
xs xs xs
1
~ exp {Ns -In [1 — g(a:s)2 +-- ] } (series expansion of In[1 + z])
1 2 lmax 3
~ expq Ns- —y(a:s) + - Ts = — =5, assuming s <1
NS lmax 2
~ exp{—?( B S) }

Inserted in the expression of p(®¥ this yields

1 +oo lmax NS lmax
exp{i [L—Ns 5 ]s— ( 3)2} ds

(eq) — _—
p 2T J—oo

From mathematical tables we find that for a > 0

+o0 b2 —
/ exp{—(az® + 2bz + ¢)}dx = \/gexp { - ac}

Employed on the equation of p(®¥ (L) and utilizing that Ny - Imax = Lmax, We get

NS lmaX 2 1
0 = —( > (Lunae/2)?

6 \ 2 ) 6N,
2 = —i[L— Ny lnax/2] = —i[L — Linax/2]
¢c = 0
1/2 1 2
(eq) _ (T 7 (L= Lmax/2)
= pY (L) = ( > eXp{
g (Lmax/2)? s (Lmax/2)?
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The average force between the endpoints of the chain is

d d
(L) = —-ZA(L) = —TS(L)
d d
= — = — . plea)
kel InZ = —kpTn |const - p(<(L)]
d 1 1. L—LmaX/Q)Z]
= kpT— lconst + — - const — 4
dl 2 6]{[5 (Lmax/2>2
1 (L — Liax/2
= —kpT -2 1( /2>,
v (Lmax/2)
finally yielding the spring stiffness
fe — dF(L) kT B 3kpT
_ AL g (Lmax/2)? Ns(max/2)*

This is a very interesting result as it proves that though the spring constant of each individual
spring approaches zero (as Us = 0 for [ € [0, l;hax]), the spring constant of the complete chain does
not vanish. This on condition that the individual springs has a maximal length, which in practice
always is fulfilled. Such a molecule therefore is a pure entropy spring. For real polymers the spring
potential is usually a mixture of a maximal stretching length, L .x, and a potential U; within this

length.

Also note that by assuming a segment length Q) = l;ax/2 for each spring, the spring stiffness in (2)
equals the spring stiffness calculated for the chain molecule in Eq. (1) (Ns = N —1). This is so

because Eq. (1) is calculated assuming that the polymer is an entropy spring.
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