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FY8201 / TFY8 Nanoparticle and polymer physics I

SOLUTION of EXERCISE 3

Eq. (x.x) refers to version AM24nov05 of lecture notes: “Nanoparticle and polymer physics”.

A) The segment length Q = 10 nm. Note: Ns = 100 segments means N = Ns + 1 = 101.

i) Contour length: L(c) = (N − 1)Q = 100× 10 nm = 1000 nm = 1, 0 μm

ii) Average end-to-end vector:

〈
→
R1N 〉 =

∫ →
R1N p(eq)(

→
R1N ) d

→
R1N

where (Eq. (2.93))

p(eq)(
→
R1N)d

→
R1N=

(
3

2π(N − 1)Q2

)3/2

exp

{
− 3R2

1N

2(N − 1)Q2

}
· dxdydz

Because of the symmetry of p(eq) integration from −∞ to ∞ yields

〈→R1N〉 = 0

iii) Average end-to-end distance:

〈R1N〉 =
∫ ∞

0
R1N p(eq)(R1N) dR1N

where (e.g. from “Molekylær biofysikk” Eq. (7.29) or “Bionanoparticle physics”, Eq. (6.3-29))

p(eq)(R1N)dR1N = 4πR2
1N

(
3

2π(N − 1)Q2

)3/2

exp

{
− 3R2

1N

2(N − 1)Q2

}
· dR1N .

From tables: ∫ ∞

0
r3 exp{−λr2} = λ−2/2

which yields
〈R1N〉 =

√
8
3π

· √N − 1 · Q = 92 nm

iv) Average quadratic end-to-end distance.

〈R2
1N〉 =

∫
R2

1N p(eq)(
→
R1N) d

→
R1N

=
∫

R2
1N

(
3

2π(N − 1)Q2

)3/2

exp

{
− 3R2

1N

2(N − 1)Q2

}
d
→
R1N

With d
→
R1N= 4πR2

1NdR1N (spherical symmetry) and integration from R1N = 0 to ∞ we obtain,
using tables:

〈R2
1N〉 = (N − 1) Q2 = 100× 102 nm2 = 10000 nm2 ⇒

√
〈R2

1N〉 = 100 nm

〈R2
1N〉 can also be calculated alternatively:

〈R2
1N〉 = Σ100

i Σ100
j 〈

→
Qi ·

→
Qj〉 = Σ100

i Σ100
j δij · Q2 = 100 · Q2
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v) Maximal stretch ratio:
L(c)√
〈R2

1N〉
=

1000 nm
100 nm

= 10

vi) Radius of gyration (Eq. (2.152):〈
R(G)2

〉
eq

=
N 2 − 1

6N
Q2 =

1
6

N + 1
N

〈
R2

1N

〉
eq

=
1
6
· 102
101

· 10000 nm2 = 1683 nm2

⇒
√
〈R(G)2〉eq = 41 nm

vi) Spring stiffness (spring constant) when changing the end-to-end distance of the
molecule:

|ks| =
F

R 1N
=

3kBT

(N − 1)Q2
(1)

=
3 × 1.38× 10−23 Nm/deg × 300 deg

100× 100 nm2
= 1.2× 10−6 N/m

B)

i) The Helmholtz free energy of each spring:

A = U1 − T · S = kS/2 · (l − lmax/2)2 − 0

This yields the average force between end points of the polymer

F = −dA

dl
= −kS · (l − lmax/2) ie. spring constant = −dF

dl
= kS

ii) When the potential equals U2 the entropy of the spring determines the spring stiffness. The
entropy S(L) as function of the end-to-end distance L is calculated through A(L) = U1−T ·S(L) =
0 − T · S(L)

The function p(eq)(L) is the probability to find the end-to-end distance of the chain, L, within a
certain length:

p(eq)(L) =

∫ · · · lmax∫
0

δ(L−∑Ns
j=1 xj)dNsx

∫ · · · lmax∫
0

dNsx
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where δ(y) is Diracs delta function and Ns = no. of segments = 100. The delta function is on
integral form expressed

δ(y) =
1
2π

∫ +∞

−∞
exp{iys}ds

Inserted in expression for p(eq) this yields

p(eq)(L) =
1

lNs
max

∫
· · ·
∫ lmax

0

1
2π

∫ +∞

−∞
exp

⎧⎨
⎩i(L−

Ns∑
j

xj) · s
⎫⎬
⎭ ds dNsx

=
1

2π lNs
max

∫ +∞

−∞
exp{iLs}

[∫ lmax

0
exp{−ix · s}dx

]Ns

ds

where we have assumed that the distribution of all segments are equal. We have also used the
relation

exp{−i
Ns∑
j=1

xjs} =
Ns∏
j=1

exp{−ixjs} = [exp{−ixs}]Ns

Further calculations yield∫ lmax

0
exp{−ixs}dx =

1
is

[1 − exp{−ilmaxs}]

=
1
is

exp{−i
lmax

2
s}
[
exp{i lmax

2
s} − exp{−i

lmax

2
s}
]

=
2
s

exp{−i
lmax

2
s} sin

lmax

2
s

= lmax exp{−i
lmax

2
s}sin lmax

2 s
lmax

2 s

Inserted in expression of p(eq) this yields

p(eq)(L) =
1
2π

∫ +∞

−∞
exp

{
i(L − Ns

lmax

2
)s
}(sin lmax

2 s
lmax

2 s

)Ns

ds

(
sin xs

xs

)Ns

= exp
{

Ns · ln
[
sinxs

xs

]} (
series expansion of

sinxs

xs

)

� exp
{

Ns · ln
[
1 − 1

3!
(xs)2 + · · ·

]}
(series expansion of ln[1 + x])

� exp
{

Ns ·
(
− 1

3!
(xs)2 + · · ·

)} (
xs =

lmax

2
· s, assuming xs � 1

)

� exp{−Ns

6
(
lmax

2
s)2}

Inserted in the expression of p(eq) this yields

p(eq) =
1
2π

∫ +∞

−∞
exp

{
i

[
L − Ns

lmax

2

]
s − Ns

6
(
lmax

2
s)2
}

ds

From mathematical tables we find that for a > 0∫ +∞

−∞
exp{−(ax2 + 2bx + c)}dx =

√
π

a
exp

{
b2 − ac

a

}

Employed on the equation of p(eq)(L) and utilizing that Ns · lmax = Lmax, we get

a =
Ns

6

(
lmax

2

)2

=
1

6Ns
(Lmax/2)2

2b = −i[L− Ns lmax/2] = −i[L − Lmax/2]
c = 0

⇒ p(eq)(L) =

(
π

1
6Ns

(Lmax/2)2

)1/2

exp

{
−

1
4 · (L − Lmax/2)2

1
6Ns

(Lmax/2)2

}
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The average force between the endpoints of the chain is

F (L) = − d
dL

A(L) =
d
dL

TS(L)

=
d

dL
kBT lnZ =

d
dL

kBT ln
[
const · p(eq)(L)

]

= kBT
d
dL

[
const +

1
2
· const −

1
4 · (L − Lmax/2)2

1
6Ns

(Lmax/2)2

]

= −kBT ·
1
2 · (L− Lmax/2)

1
6Ns

(Lmax/2)2
,

finally yielding the spring stiffness

kS = −d F (L)
dL

=
kBT

1
3Ns

(Lmax/2)2
=

3kBT

Ns(lmax/2)2
. (2)

This is a very interesting result as it proves that though the spring constant of each individual
spring approaches zero (as U2 = 0 for l ∈ [0, lmax]), the spring constant of the complete chain does
not vanish. This on condition that the individual springs has a maximal length, which in practice
always is fulfilled. Such a molecule therefore is a pure entropy spring. For real polymers the spring
potential is usually a mixture of a maximal stretching length, Lmax, and a potential U1 within this
length.

Also note that by assuming a segment length Q = lmax/2 for each spring, the spring stiffness in (2)
equals the spring stiffness calculated for the chain molecule in Eq. (1) (Ns = N − 1). This is so
because Eq. (1) is calculated assuming that the polymer is an entropy spring.
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