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FY8201 / TFY8 Nanoparticle and polymer physics I

SOLUTION of EXERCISE 4

Equilibrium probability distribution of a three-bead Kramer’s chain

Eq. (x.x) refers to version AM24nov05 of lecture notes: “Nanoparticle and polymer physics”.

A. The chain in two dimensions with bead 1 being fixed to origo

There are two internal generalized coordinates: The angle θ1 between segment vector 1 and the
y-axis and the angle θ2 between segment vector 2 and the y-axis. The Cartesian coordinates of the
three beads are:

x0 = 0 y0 = 0
x1 = a1 sin θ1 y1 = a1 cos θ1

x2 = x1 + a2 sin θ2 y2 = y1 + a2 cos θ2

= a1 sin θ1 + a2 sin θ2 = a1 cos θ1 + a2 cos θ2

(1)

As given we use m1 = m2 = m3 = m = 2 and a1 = a2 = a = 1. In a Kramer’s chain there is only
kinetic energy K, being equal

K(θ1, θ2, θ̇1, θ̇2) =
1
2
m(ẋ2

1 + ẏ2
1 + ẋ2

2 + ẏ2
2)

= (cos θ1 · θ̇1)2 + (− sin θ1 · θ̇1)2

+(cos θ1 · θ̇1)2 + 2(cos θ1 · θ̇1)(cos θ2 · θ̇2) + (cos θ2 · θ̇2)2

+(− sin θ1 · θ̇1)2 + 2(− sin θ1 · θ̇1)(− sinθ2 · θ̇2) + (− sin θ2 · θ̇2)2

= θ̇2
1 + θ̇2

1 + θ̇2
2 + 2(sin θ1 · sin θ2 + cos θ1 cos θ2) · θ̇1θ̇2

= 2θ̇2
1 + θ̇2

2 + 2θ̇1θ̇2 · cos ξ (2)

where ξ = θ2 − θ1 equals the included angle.

The Hamiltonian H and the Lagrangian L are given by

H(θ1, θ2, p1, p2) = K + V = K(θ1, θ2, p1, p2) (3)
L(θ1, θ2, p1, p2) = K− V = K(θ1, θ2, p1, p2) (4)

since there is no potential energy V involved. The kinetic energy has to be expressed by the
generalized coordinates (θ1, θ2, p1, p2). The generalized momenta are

p1 =
∂L
∂θ̇1

= 4θ̇1 + 2θ̇2 cos ξ (5)

p2 =
∂L
∂θ̇2

= 2θ̇2 + 2θ̇1 cos ξ (6)

Solving with respect to θ̇1 and θ̇2 yields

θ̇1 =
1

2(2− cos2 ξ)
(p1 − p2 cos ξ) =

γ

2
(p1 − p2 cos ξ) (7)

θ̇2 =
1

2(2− cos2 ξ)
(2p2 − p1 cos ξ) =

γ

2
(2p2 − p1 cos ξ), (8)

defining for simplicity γ = (2− cos2 ξ)−1. Inserted in Eqs. (15) and (16) we obtain after some basic
calculation

H(ξ, p1, p2) =
γ

4
(p2

1 + 2p2
2 − 2p1p2 cos ξ) (9)

The probability density in configuration space is determined by integrating out the momenta of
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the probability distribution function given by the Boltzmann factor exp{−H/kBT}:
Ψ(ξ) = C

∫ ∫ ∞

−∞
exp{−H/kBT}dp1dp2 (10)

where C is the normalization constant.

Before integration we rewrite the exponent to complete quadratic expressions:

γ(2p2
2 − 2p1p2 cos ξ + p2

1) = 2γ(p2 − 1
2
p1 cos ξ)2 + γ(p2

1 −
1
2
p2
1 cos2 ξ)

= γ(p2 − 1
2
p1 cos ξ)2 + γp2

1

1
2γ

= γu2 +
1
2
p2
1, (11)

where we have defined u = p2 − 1
2p1 cos ξ and recalled γ = (2 − cos2 ξ)−1. Integration using∫∞

−∞ exp{−bu2}du =
√

π
b , yields

Ψ(ξ) = C′
√

1
γ

= C′
√

2 − cos2 ξ = C′′
√

1− 1
2

cos2 ξ (12)

where C′ and C′′ are new normalization constants.

Because of the ξ-dependence the Kramer’s chain is not a random-walk configuration. Note especially
that Ψ(ξ = π/2)

Ψ(ξ = 0)
=

√
2 ≈ 1.41 (13)

indicating that there is 41 % larger probability to find the segment vectors orthogonal than parallell.

B. The chain in three dimensions with no fixed point

We recall the expression of kinetic energy of a three-bead Kramer’s chain in two dimensions from
lecture notes Ch. 3.2.3, Eq. (3.42):

K =
1
2
mp

→̇
r

2

c +
1
6
a2m

(
θ̇1

θ̇2

)T

·
(

2 cos ξ
cos ξ 2

)
·
(

θ̇1

θ̇2

)
, (14)

where ξ = θ2 − θ1 equals the included angle.

The kinetic energy of center of mass is decoupled from the rest and is not included in the following
analysis. As noted we simplify by choosing m = 2 and a = 1. Multiplication of Eq. (14) yields

K =
1
3

(
2θ̇2

1 + cos ξθ̇1θ̇2 + cos ξθ̇1θ̇2 + 2θ̇2
2

)
=

2
3

(
θ̇2
1 + cos ξθ̇1θ̇2 + θ̇2

2

)
(15)

The Hamiltonian H and the Lagrangian L are given by

H(θ1, θ2, p1, p2) = K + V = K(θ1, θ2, p1, p2) (16)
L(θ1, θ2, p1, p2) = K− V = K(θ1, θ2, p1, p2) (17)

since there is no potential energy V involved. The kinetic energy has to be expressed by the
generalized coordinates (θ1, θ2, p1, p2). The generalized momenta are

p1 =
∂L
∂θ̇1

=
4
3
θ̇1 +

2
3
θ̇2 cos ξ (18)

p2 =
∂L
∂θ̇2

=
4
3
θ̇2 +

2
3
θ̇1 cos ξ (19)
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Solving with respect to θ̇1 and θ̇2 yields

θ̇1 =
3

2(4 − cos2 ξ)
(2p1 − p2 cos ξ) =

3
2
γ(2p1 − p2 cos ξ) (20)

θ̇2 =
3

2(4− cos2 ξ)
(2p2 − p1 cos ξ) =

3
2
γ(2p2 − p1 cos ξ), (21)

defining for simplicity γ = (4 − cos2 ξ)−1. Inserted in Eqs. (15) and (16) we obtain

H(ξ, p1, p2) =
2
3
· 9
4
γ2(4p2

1 − 4p1p2 cos ξ + p2
2 cos2 ξ)

+
2
3
· cos ξ

9
4
γ2(4p1p2 − 2p2

1 cos ξ − 2p2
2 cos ξ + p1p2 cos2 ξ)

+
2
3
· 9
4
γ2(4p2

2 − 4p1p2 cos ξ + p2
1 cos2 ξ)

=
3
2
γ2
{
p2
1(4− cos2 ξ) + p2

2(4− cos2 ξ) − p1p2 cos ξ(4 − cos2 ξ)
}

=
3
2
γ
{
p2
1 + p2

2 − p1p2 cos ξ
}

(22)

The probability density in configuration space is determined by integrating out the momenta of
the probability distribution function given by the Boltzmann factor exp{−H/kBT}:

Ψ(ξ) = C

∫ ∫ ∞

−∞
exp{−H/kBT}dp1dp2 (23)

where C is the normalization constant.

Before integration we rewrite the exponent to complete quadratic expressions:

γ(p2
2 − p1p2 cos ξ + p2

1) = γ(p2 − 1
2
p1 cos ξ)2 + γ(p2

1 −
1
4
p2
1 cos2 ξ)

= γ(p2 − 1
2
p1 cos ξ)2 + γp2

1

1
4γ

= γu2 +
1
8
p2
1, (24)

where we have defined u = p2 − 1
2p1 cos ξ and recalled γ = (4 − cos2 ξ)−1. Integration using∫∞

−∞ exp{−bu2}du =
√

π
b , yields

Ψ(ξ) = C′
√

1
γ

= C′
√

4 − cos2 ξ = C′′
√

1− 1
4

cos2 ξ (25)

where C′ and C′′ are new normalization constants.

Because of the ξ-dependence the Kramer’s chain is not a random-walk configuration. Note especially
that Ψ(ξ = π/2)

Ψ(ξ = 0)
=
√

4
3
≈ 1.15, (26)

indicating that there is 15 % larger probability to find the segment vectors orthogonal than parallell.

C. The chain in three dimensions with no fixed point

In three dimensions we need two more generalized coordinates to give the three-bead Kramer’s
chain, namely the two angles (φ, θ) which define the plane of the chain. However, using the same
procedure as given above for two dimensions, the rotation of this plane yields general momenta
being orthogonal to the plane of the chain. Thus there is no coupling between these velocities
(momenta) and the momenta analysed above for the two-dimensional problem. The momenta
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can therefore easily be integrated out, and the conclusion is that the probability distribution for
the included angle for the 3-dimensional three-bead Kramer’s chain effectively is identical to a
two-dimensional problem.

For a formal analysis we have to use the three-dimensional spherical coordinates (φ1, θ1, φ2, θ2)
for the orientation of the two segment vectors. It can easily be shown that the included angle ξ
(geometrically the same as in the two-dimensional chain) is expressed

cos ξ = sin θ1 sin θ2 cos(φ1 − φ2) + cos θ1 cos θ2 (27)

Because of the properties of the spherical coordinates the factors sin θ1 sin θ2 enters the probability
distribution:

Ψ(θ1, θ2, ξ) = C · sin θ1 sin θ2

√
1 − 1

4
cos2 ξ (28)

Also note that all configuration probilities found are temperature independent.

Normalization

C−1 =
∫ ∫ ∫ ∫

sin θ1 sin θ2

√
1 − 1

4
cos2 ξ dθ1dφ1dθ2dφ2 (29)

Take the first integration on θ1, φ1, in which we choose to fix segment vector 2 along z-axis (θ2 = 0).
Then ξ = θ1 and

C−1 =
∫ ∫

sin θ2

[∫ 2π

0

∫ π

0
sin θ1

√
1 − 1

4
cos2 θ1 dθ1dφ1

]
dθ2dφ2

In the inner dθ1 integral we substitute 1
2 cos θ1 = cos x, thus 1

2 sin θ1dθ1 = sinxdx and we obtain

C−1 =
[∫ ∫

sin θ2dθ2dφ2

] [
2π

∫ 2π/3

π/3
2 · sin x

√
1 − cos2 x dx

]

=
[∫ 2π

0
dφ2

∫ π

0
sin θ2dθ2

] [
2π

∫ 2π/3

π/3
2 sin2 x dx

]

= [4π]
[
2π · (x − 1

2
sin 2x)

]2π/3

π/3

= 4π

[
2π · (π

3
+

√
3

2
)

]

= (4π)2 ·
(

π

6
+

√
3

4

)
. (30)

The normalized probability thus equals

Ψ(θ1, θ2, ξ) =
sin θ1 sin θ2

(4π)2
·
√

1 − 1
4 cos2 ξ

π/6 +
√

3/4
(31)

Compare to the random walk distribution (that is, both segments free to rotate in any direction):

Ψ(θ1, θ2) =
sin θ1 sin θ2

(4π)2
(32)

and the distribution of ”included angle” ξ is uniform on the sphere, and the same probability to
find the two segments orthogonal as parallell.
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