FY8201 / TFY8 Nanoparticle and polymer physics I SOLUTION of EXERCISE 6

A) The d-dimensional vectors $\vec{X} = (X_1, X_2, \dots, X_d), X_i \in [0, 1]$ are generated from a uniform random-number generator. We intend to study the distribution of \vec{X} within a d-dimensional sphereshell. The generality of d dimensions (line, circle, sphere, ...) complicates things a bit, but dont't give up.

The volume of a d-dimensional sphere of radius $X = |\vec{X}|$ equals

$$V_d(X) = \Omega_d X^d,\tag{1}$$

where Ω_d is the volume of a sphere in d dimensions with radius equal to 1.¹

The volume of a d-dimensional shell of sphere with thickness dX and radius X equals

$$dV_d = \Omega_d \cdot d \cdot X^{d-1} dX. \tag{2}$$

Eq. (2) may be seen from the fact that $dV_d = A_d dX$, so $A_d = \frac{dV_d(X)}{dX} = \Omega_d \cdot d \cdot X^{d-1}$, implying Eq. (2). Alternatively, visualize it by integration:

$$V_d(X) = \int_0^X A_d \, dX = \int_0^X \Omega_d \, dX^{d-1} dX = \Omega_d X^d$$
 (3)

The number of vectors, n, within a shell of sphere at radius X, relative to the number N within the whole sphere of radius R is

$$\frac{n}{N} = \frac{\mathrm{d}V_d}{V_d(R)} = \frac{\Omega_d \ d \ X^{d-1} \mathrm{d}X}{\Omega_d R^d} = \frac{d \cdot X^{d-1} \mathrm{d}X}{R^d}.\tag{4}$$

So far for infinitesimal dX. For finite $dX = \Delta X$ we use Eq. (4) with $X \to \bar{X}_i =$ arithmetic average in the interval $(X_i, X_i + \Delta X)$. An estimate of \bar{X}_i is the arithmetic middle in the interval:

$$\bar{X}_1 = \frac{\Delta X}{2}, \qquad \bar{X}_2 = \frac{3\Delta X}{2}, \qquad \bar{X}_i = \frac{(2i-1)\Delta X}{2} = (i-1/2)\Delta X.$$
 (5)

and we obtain from Eq. (4) that the number of vectors within the interval ΔX equals

$$n = \frac{Nd \cdot \bar{X}_i^{d-1} \Delta X}{R^d} = \frac{Nd}{R^d} \cdot \left(i - \frac{1}{2}\right)^{d-1} (\Delta X)^d.$$
 (6)

Simulation: We have chosen: d = 2, $\Delta X = 1/10$, R = 1, N = 100000

With these parameters the estimated numbers of vectors is according to Eq. (6):

$$n = \frac{100000 \cdot 2}{1} \cdot \left(i - \frac{1}{2}\right)^1 \left(\frac{1}{10}\right)^2 = 2000 \cdot \left(i - \frac{1}{2}\right)^1 \tag{7}$$

Estimated and simulated result in the following table. (Numbers from P.Skjetne using Turbo Pascal ver 5.5).

$$^{1}\Omega_{1}=2, \Omega_{2}=\pi, \Omega_{3}=4\pi/3, \Omega_{4}=\pi^{2}/2, \Omega_{5}=8\pi^{2}/15, \Omega_{6}=\pi^{3}/6, \text{ generally: } \Omega_{d}=\frac{2\pi^{d/2}}{d\cdot\Gamma(d/2)}$$

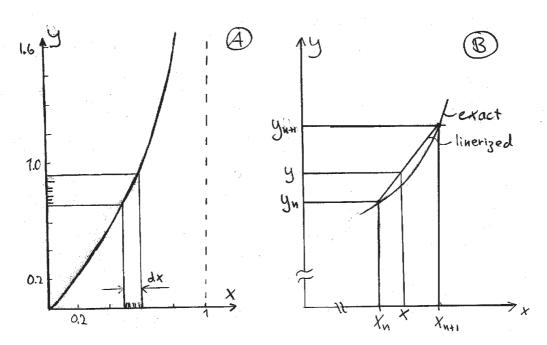
Interval	\bar{X}	Theoretical	Simulated
1	0.05	1000	1024
2	0.15	3000	3044
3	0.25	5000	5051
4	0.35	7000	6881
5	0.45	9000	9122
6	0.55	11000	11072
7	0.65	13000	13014
8	0.75	15000	14893
9	0.85	17000	16904
10	0.95	19000	18995
Sum		101000	100000

The theoretical values do not summarize to N = 100000 because of the approximation of \bar{X} .

B) Available is the uniform distribution $p(x) = 1 \ \forall \ x \in [0, 1]$, and we want to obtain a distribution $p(y) = \exp\{-y\} = e^{-y}$. Note that p(y) is normalized because $\int_0^\infty p(y) dy = \left[-e^{-y}\right]_0^\infty = 1$.

Because p(x) is uniform the hits on x is uniformly distributed along the x-axis. The distribution along y-axis should be according to $p(y) = e^{-y}$, that is highest density of hits at y = 0 and decreasing constantly to 0 (figure A below). In the numerical transformation the numbers of hits dN_x within dx is mapped to exactly the same number of hits dN_y within (a wider) dy. As the density of hits is p(x) and p(y), respectively, we obtain:

$$dN_x = dN_y \quad \Rightarrow \quad p(x)dx = p(y)dy.$$
 (8)



To determine the formulae of transformation we integrate Eq. (8) from (0,0) to (x,y):

$$\int_0^x p(x) dx = \int_0^y p(y) dy \quad \Rightarrow \quad \int_0^x 1 dx = \int_0^y e^{-y} dy \quad \Rightarrow \quad x = 1 - e^{-y}$$
 (9)

The inverse function is

$$\underline{y(x) = -\ln(1-x)},\tag{10}$$

and with x uniformly distributed on $x \in [0,1]$ we obtain the required distribution p(y).

We may also argument for this distribution by an approximate numerical method:

We divide the interval $x \in [0, 1]$ in N equal intervals and approximates the transformation graph to a straight line between two neighbouring points (figure B above). The point (x_n, y_n) is given by

$$x_n = 1 - e^{-y_n}, \text{ where } x_n = \frac{n}{N}$$

$$\Rightarrow y_n = -\ln\left(1 - \frac{n}{N}\right) \tag{11}$$

Inbetween the neighbouring points we approximate to a straight line:

$$\frac{y(x) - y_n}{x - x_n} = \frac{\Delta y}{\Delta x} = \frac{y_{n+1} - y_n}{x_{n+1} - x_n} = \frac{y_{n+1} - y_n}{1/N}$$
 (12)

The *n* to be used for the actual *x* is the one which makes *x* belong to the interval $(\frac{n}{N}, \frac{n+1}{N})$. y(x) is found to be:

$$y(x) = y_n + N \cdot [y_{n+1} - y_n] \cdot \left(x - \frac{n}{N}\right)$$

$$\stackrel{(11)}{=} -\ln\left(1 - \frac{n}{N}\right) - N\left[\ln\left(1 - \frac{n+1}{N}\right) - \ln\left(1 - \frac{n}{N}\right)\right] \left(x - \frac{n}{N}\right)$$

$$= -\ln\left(1 - \frac{n}{N}\right) - N\ln\left(1 - \frac{1}{N} \cdot \left(1 - \frac{n}{N}\right)^{-1}\right) \left(x - \frac{n}{N}\right)$$

$$\approx -\ln\left(1 - \frac{n}{N}\right) + N\frac{1}{N} \cdot \left(1 - \frac{n}{N}\right)^{-1} \left(x - \frac{n}{N}\right)$$

$$\approx -\ln\left(1 - \frac{n}{N}\right) + \left(1 + \frac{n}{N}\right) \left(x - \frac{n}{N}\right)$$

$$(13)$$

where we have utilized that for large N (small ϵ) $\ln(1+\epsilon) \approx \epsilon$. Further, $\frac{n}{N} \to x$ for large N, so the result is: $y(x) \approx -\ln(1-x)$, (14)

as equals the result from the analytical method above.

C) The Box-Muller algorithm to generate random Gaussian distributed numbers is given in the exercise.

Simulation:

The result of drawing x_1 and x_2 randomly in [0,1] and using the Box-Muller algorithm is plotted below. In the simulation we have used N = 100000 and normalized y(x). $y \in [-5,5]$ is divided in 20 intervals and the number of hits within each interval is plotted. (Data from P. Skjetne, theoretical and numerical curve:)

