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FY8201 / TFY8 Nanoparticle and polymer physics I
SOLUTION of EXERCISE 7

Eq. (z.x) refers to version AM24nov05 of lecture notes: “Nano-particle and polymer physics”.
Equations pertinent to this exercise you will find in Ch. 5.2.1

A) The sphere perturbs the velocity field with an amount ¢, and the resultant fluid velocity is thus

T=u+7, (1)
where u is the stationar_y Veloci%ty ﬁelé. We apply coordinates (5;, gg, 5;5) as given in Fig. 5.2 of
lecture notes, i.e. ¥ = v,.0, 4+ v9dg + v¢0s. Axial symmetry abgut z-axis im_Plies Vp = 9 We choose
to align the stationary velocity field with the z-axis: @ = —ud, = —u cos 06, + usin #dg.

According to Egs. (5.46)-(5.47) the resulting velocity field is expressed

—u [1 - g (%) —|—% (%)3] cos 0 (2)
Ji-3(2) -1 (2)one .

Note that the boundary conditions are fulfilled:

v (1, 0)

vg(r, 0)

at the bead surface r = o:  wy(o,0) = 0 (no slip condition) wv,(0,0) =0 (4)
far away from the bead: lim v, = —ucos®; lim vy = usinf ( lim v = ﬁ) . (5
T—00 T—00 T—00

A sketch of v

B) The pressure distribution on the bead surface is given by Eq. (5.50) with r = o

3
p(r=o0,0) = [5175 wo Tt —pmyg U] cos 6 + po, (6)
where 7 is the fluid viscosity, g is the gravitational constant, py, is the mass density of the fluid
and pg is a constant. The term containing g represents the buoyancy. Relative to pg, the pressure
on the bead surface is

p(0,0) —po o< cosd, (7)

represented by arrows in the sketch:
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z
lengde o< cos 6
0 < “Overtrykk”
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C) The geometry is the same when the solid sphere is replaced an air bubble, however, the boundary
conditions are different. The requirement at r — oo is as above, and the condition v,(c) = 0 is
still valid as no fluid may cross into the bubble. However the non-slip condition vg(c) = 0 does not
apply as there is no surface to “stick” on. In place, the shear force 7,9 along the surface must be
zero at the bubble surface. The boundary conditions at the bead surface r = o therefore are

vr(0,0) =0 Tr9(0,60) =0 (8)

We may follow the solution in lecture notes up to where the boundary conditions are included.
That is, we introduce the stream function ¥ by the definition

1 v L 0¥
U= ~"ameos M w=igar )
¥ is assumed to be expressed U(r,0) = f(r)-sin?0 , (10)

where the trial solution of f(r) is
fr) = A_pr t 4 At 4 Agr? + Agr?
= f/(r> = _A—1T_2 + A1 + 2A9r + 4A4r3
= f'(r) = 241773 + 245+ 12442 (11)

The boundary conditions for  — oo at Eq. (5.42) yields Ay = § and A4 =

The boundary conditions at » = o at Eq. (8) inserted in Eq. (9) evaluate to:

. ov
vp(0,0) =0 £ (9) 20 =0 = 2sinfcosff(c)=0 = f(o)=0 (12)
0 (e 1 ovy . y
= e |r— (=) + = — —2f' =0 for r=o. 1
Tr ns[r(?r(r)—i_r@&]ra 0 = of f'=0 for r=o (13)
Details of the last calculation (note that v, = 0 for all 6):
PG e k)
o= s Cor\r /)],y " \"ar \72sing or o
[0 (f'(r)sin® "(r "(r ,
o (a2
r £/ !
_ o [19) —2f(20>]sin9 (14)
| o o
Egs. (12) and (13) inserted in Eq. (11) make the coefficients A_; and A; determined:
flo) = A o7 + Ajot + 4502 =0
of'(0) = 2f'(0) = 24 102+ 2450 +2A 10 % —2A; — 4450 =0
= A 1=0 AN A =-Ay0 = —ga

fr) = g(ﬂ —or) and U(r,0) = g( 2 _ or)sin® 0 (15)

\
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Inserted in Eq. (9)

v = —u [1 — %] cos 0 (16)
lo] .
vg = u [1 — 5;] sinf . (17)

It is interesting to compare this velocity field to the velocity field around a rigid sphere in Egs. (2)
and (3).

To determine the friction coefficient, ¢, we need the total force, F, in z-direction, as F, = —(-u+
Fiuoyancy- Integrate as for a solid bead (Eq. (5.51)):

2 pm — N
F o= / / (— 5. - Trn> o2 sin §d0ds (18)
0 0 r=o
where 7, is the traction normal to the bubble and thus
_giz;enz_gizg}?r> = _gz'<777"7“ gr""’”r@ g@)
= _(p+Trr> g>z : gr —Tro g>z : g@
= —(p+7r) (—cosh) —0- gz . gg (19)

- =

where we have used d,=98, cosf— ¢y sinf and Eq. (8): 79 = 0.

The pressure p(r, #) is determined from the equation of motion:
Ip

&= Tt pud

_ i8_2(2 ) + 1 ﬁ(in9%> _ )
= 122" " T agine 00 \MMY oe Pmg €OS

1 1
=" [—2(—2u cosf) + —2u - (1 - f) cos 9] — Pmg cos
r r r

= —Quns% cosf — pmgcosh . (20)
r

Integration yields
p(r,0) = uns—g2 cos O — pmgr - cosf + pg . (21)
r

Finally we in Eq. (19) need 7,... From 7= —1 (V17+ (Vﬁ)T) we obtain

ov o
Trp = _21758—; = 2nsur—2 cosf. (22)
Inserted in Eq. (19):
— 6, m, = —(unsi2 cosf — pmgr - cosf + pg + 277510% cosf) (— cos)
r r
= 3u175£2 cos? 0 — pmgr - cos? 0 — po cos @, (23)
r

and the force in Eq. (18) is determined by integration, using
//0059 sinfdfd¢ =0 ; //0052 0sin0dfd¢ = 4m /3,

yielding at r = o

4
F, = —4mnsou—+ ?Wagpmg . (24)

The last term equals the buoyancy and the first the viscous drag where the (translational) friction
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coefficient is recognized as

Chubble = 47150 (25)

Note that the friction of the air bubble is 4/6 of the friction of a solid bead of the same size.

The velocity of free rise is found by F, = 0, yielding
u = p—mUQg.
31ls
At this value of u Egs. (21) and (22) show that at the surface of the bubble the total traction

normal to the bubble equals pg for all values of 6:

Ty = D+ Tpr
2 2
= | —gpmogcos 0+po |+ 3PmoY cos = pg. (26)

This means that the bubble will remain spherical. However, inertial forces (not included here) will
tend to deform the bubble, and the bubble shape will be given as a balance among viscous, inertial,
and surface tension forces.
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