

Oppgave 1

Ei kule triller oppover en bakke, passerer toppen og triller så nedover en bakke på motsatt side. Skissér hvilken retning friksjonen virker fra underlaget på kula, på vei opp, pả toppen og på vei ned. Begrunn svaret. Vi antar at vi har rein rulling under hele bevegelsen.

Oppgave 2

e. To masser, m og $3 m$, ligger pâ et friksjonsfritt bord pả hver sin side av en spent fjar. Nâr fjarlâsen ápnes, skyves de to massene i hver sin retning. Hvordan fordeles den potensielle energien i den spente fjara pa kinetisk energi til de to massene?
A 25% pà $m, 75 \%$ pả $3 m$
B 75% pà $m, 25 \%$ pa $3 m$
C 10% pả $m, 90 \%$ pả 3 m
90% pa $m, 10 \%$ pa $3 m$
E 50% pả $m, 50 \%$ pả $3 m$

```
m-MNW-3m
```

```
m-MNW-3m
```


Oppgave 3

Oppgave 4

b. En student tar fart og hopper pá en karusell som dermed begynner à rotere (tilnarmet friksjonsfritt) omkring en aksling som start fast i bakken, og som passerer giennom karusellens sentrum. For systemet karusell + student, hvilke(n) storrelse(r) endrer seg ikke fra for til etter studentens innhopp pá karusellen? Her er E systemets energi, p systemets bevegelsesmengde og L systemets spinn mhp. en akse giennon karusellens sentrum.)
A) Bare L
B) $L \operatorname{og} E$
C) $L o g p$
C) $L, E \operatorname{og} p$
E) Bare p

A18.5
You have a quantity of ideal gas in a cylinder with rigid walls that prevent the gas from expanding or contracting. If you double the rms speed of molecules in the gas, the gas pressure
A. increases by a factor of 16 .
B. increases by a factor of 4 .
C. increases by a factor of 2 .
D. increases by a factor of $2^{1 / 2}$.

A18.3

Consider two specimens of ideal gas at the same temperature.
The molecules in specimen \#1 have greater molar mass than the molecules in specimen \#2. How do the rms speed of molecules ($v_{\text {rms }}$) and the average translational kinetic energy per molecule (KE) compare in the two specimens?
A. v_{rms} and KE are both greater in specimen \#2.
B. v_{rms} is greater in specimen \#2; KE is the same in both specimens.
C. v_{rms} is greater in specimen \#2; KE is greater in specimen \#1.
D. v_{rms} and KE are the same in both specimens.
E. None of the above is correct.

A19.6

An ideal gas is taken around the cycle shown in this p - V diagram, from a to b to c and back to a. Process $b \quad c$ is isothermal.

For process $a \quad b$,
A. $Q>0$ and $\Delta U>0$.
B. $Q>0$ and $\Delta U=0$.

C. $Q=0$ and $\Delta U>0$.
D. $Q=0$ and $\Delta U<0$.
E. $Q<0$ and $\Delta U<0$.

A19.5
An ideal gas is taken around the cycle shown in this $p-V$ diagram, from a to b to c and back to a. Process $b \quad c$ is isothermal.
For this complete cycle,
A. $Q>0, W>0$, and $\quad U=0$.
B. $Q>0, W>0$, and $U>0$.
C. $Q=0, W>0$, and $U<0$.
D. $Q=0, W<0$, and $U>0$.
E. $Q>0, W=0$, and $\quad U>0$.

A19.9

An ideal gas begins in a thermodynamic state a. When the temperature of the gas is raised from T_{1} to a higher temperature T_{2} at a constant volume, a positive amount of heat Q_{12} flows into the gas. If the same gas begins in state a and has its temperature raised from T_{1} to T_{2} at a constant pressure, the amount of heat that flows into the gas is
A. greater than Q_{12}.
B. equal to Q_{12}.
C. less than Q_{12}, but greater than zero.
D. zero.
E. negative (heat flows out of the system).

A19.11

When an ideal gas is allowed to expand isothermally from
volume V_{1} to a larger volume V_{2}, the gas does an amount of work equal to W_{12}.

If the same ideal gas is allowed to expand adiabatically from volume V_{1} to a larger volume V_{2}, the gas does an amount of work that is
A. equal to W_{12}.
B. less than W_{12}.
C. greater than W_{12}
D. either A., B., or C., depending on the ratio of V_{2} to V_{1}.

A20.7

A Carnot engine takes heat in from a reservoir at 400 K and discards heat to a reservoir at 300 K .

If the engine does $12,000 \mathrm{~J}$ of work per cycle, how much heat does it take in per cycle?
A. $48,000 \mathrm{~J}$
B. $24,000 \mathrm{~J}$
C. $16,000 \mathrm{~J}$
D. 9000 J
E. none of the above

A20.4
During one cycle, an automobile engine takes in $12,000 \mathrm{~J}$ of heat and discards 9000 J of heat. What is the efficiency of this engine?
A. 400%
B. 133%
C. 75%
D. 33%
E. 25%

A20.8
You put an ice cube at $0^{\circ} \mathrm{C}$ inside a large metal box at $70^{\circ} \mathrm{C}$. The ice melts and the entropy of the ice increases. Which statement is correct?

A. Entropy of the metal box is unchanged; total entropy increases.
B. Entropy of the metal box decreases; total entropy decreases.
C. Entropy of the metal box decreases; total entropy is unchanged.
D. Entropy of the metal box decreases; total entropy increases.
E. none of the above

Oppgave 3

i. Tre jenter star pá ytterkanten av en karusell som roterer med en vinkelhastighet ω og rotasjonen er friksjonsfri. Under rotasjonen gàr jentene rolig inn mot sentrum av karusellen (se figuren). Under bevegelsen vil det totale spimn L om karusellens aksling og den totale kinetiske energi E til karusellen + jentene endre seg slik:
A) L oker og E oker
B) L oker og E uendra
C) L innila on E - ber
D) L uendra og E uendra
E) L uendra og E avtar

Oppgave 4

b. En student tar fart og hopper pả en karusell som dermed begynner ả rotere (tillnarmet friksjonsfritt) b. En student tar fart og hopper pa en karusell som dermed begynner a rotere (tilinarmet friksjonsfritt
omkring en aksling som stâr fast i bakken, og som passerer giennom karusellens sentrum. For systemet karusell + student, hvilke(n) storrelse((r) endrer seg ikke fra for til etter studentens innhopp pá karusellen? (Her er E systemets energi, p systemets bevegelsesmengde og L systemets spinn mhp. en akse giennom karusellens sentrum.)

[^0]E) Bare p

b. A. Landingen pà karusellen er et uelastisk stot, sii (mekanisk) energi E for systemet kan ikke vare bevart. Akslingen som stâr fast i bakken, virker pá systemet med en kraft nâr studenten lander. Dermed kan heller ikhe ystemets bevegelsesmengde p vare bevart. Men denne kraften fra akslingen representerer ikke noe kraftmomen
nhp. en akse gjennom karusellens sentrum. slik at spinnet L er bevart.

A18.5

You have a quantity of ideal gas in a cylinder with rigid walls that prevent the gas from expanding or contracting. If you double the rms speed of molecules in the gas, the gas pressure
A. increases by a factor of 16 .
B. increases by a factor of 4 .
C. increases by a factor of 2 .
D. increases by a factor of $2^{1 / 2}$

$$
\begin{aligned}
& \text { Kinetisk gassteori } \\
& E_{\mathrm{k}}=1 / 2 m\left\langle V^{2}\right\rangle=3 / 2 k_{\mathrm{B}} T \\
& p V=N / V k_{\mathrm{B}} T=N / V 2 / 3 E_{\mathrm{k}} \quad \text { (formelark) }
\end{aligned}
$$

A18.8

If the pressure of the atmosphere is below the triple-point pressure of a certain substance, that substance can exist (depending on the temperature)
A. as a liquid or as a vapor, but not as a solid.
B. as a liquid or as a solid, but not as a vapor. C. as a solid or as a vapor, but not as a liquid.
D. as a solid, a liquid, or a vapor.

A18.3

Consider two specimens of ideal gas at the same temperature. The molecules in specimen \#1 have greater molar mass than the molecules in specimen \#2. How do the rms speed of molecules (v_{rms}) and the average translational kinetic energy per molecule (KE) compare in the two specimens?
A. v_{rms} and KE are both greater in specimen \#2.
B. v_{rms} is greater in specimen \#2; KE is the same in both specimens.
C. v_{rms} is greater in specimen \#2; KE is greater in specimen \#1.
D. v_{rms} and KE are the same in both specimens.
E. None of the above is correct. Kinetisk gassteori
$E_{\mathrm{k}}=1 / 2 m\left\langle v^{2}\right\rangle=3 / 2 k_{\mathrm{B}} T$ lik for begge
$=>$ minst $m(\# 2)$ har høyest $\left\langle v^{2}\right\rangle$

A19.5

An ideal gas is taken around the cycle shown in this $p-V$ diagram, from a to b to c and back to a. Process $b \quad c$ is isothermal.
For this complete cycle,

$$
\sqrt{\text { A. } . ~} Q>0, W>0, \text { and } \quad U=0 .
$$

B. $Q>0, W>0$, and $\quad U>0$.
C. $Q=0, W>0$, and $U<0$.
D. $Q=0, W<0$, and $\quad U>0$.
E. $Q>0, W=0$, and $\quad U>0$.

A19.6
An ideal gas is taken around the cycle shown in this p - V diagram, from a to b to c and back to a.
Process $b \quad c$ is isothermal.
For process $a \quad b$,
A. $Q>0$ and $\Delta U>0$.
B. $Q>0$ and $\Delta U=0$.
C. $Q=0$ and $\Delta U>0$.
D. $Q=0$ and $\Delta U<0$.
E. $Q<0$ and $\Delta U<0$.

a->b isokor => W=0

$$
\text { 1. } \mathrm{H}=>\Delta U=Q
$$

Temp øker $=>\Delta U$ og Q er positive

A19.9

An ideal gas begins in a thermodynamic state a. When the temperature of the gas is raised from T_{1} to a higher temperature T_{2} at a constant volume, a positive amount of heat Q_{12} flows into the gas. If the same gas begins in state a and has its temperature raised from T_{1} to T_{2} at a constant pressure, the amount of heat that flows into the gas is
A. greater than Q_{12}.
B. equal to Q_{12}.

1. Hovedsetning: $Q=\Delta U+W$
2. Hovedsetning: $Q=\Delta U+W$

Temp øker likt $=>\Delta U>0$ og lik begge Konstant volum: $W>0$
C. less than Q_{12}, but greater than zero.
D. zero.
E. negative (heat flows out of the system).

A19.11

When an ideal gas is allowed to expand isothermally from volume V_{1} to a larger volume V_{2}, the gas does an amount of work equal to W_{12}

If the same ideal gas is allowed to expand adiabatically from volume V_{1} to a larger volume V_{2}, the gas does an amount of work that is
A. equal to W_{12}
B. less than W_{12}
C. greater than W_{12}.

Ved adiabatisk ekspansjon faller temperaturen fordi $\Delta U=W<0$
C. grater than W_{12}.

Areal under $p V$-kurve og dermed arbeidet er mindre enn for isoterm.
D. either A., B., or C., depending on the ratio of V_{2} to V_{1}.

A20.4

During one cycle, an automobile engine takes in $12,000 \mathrm{~J}$ of heat and discards 9000 J of heat. What is the efficiency of this engine?
A. 400%
B. 133%
C. 75%

$=\left(Q_{\text {inn }} Q_{u t}\right) / Q$
$=(12000-9000) / 12000$ $=1 / 4$

A20.7

A Carnot engine takes heat in from a reservoir at 400 K and discards heat to a reservoir at 300 K .

If the engine does $12,000 \mathrm{~J}$ of work per cycle, how much heat does it take in per cycle?
$\sqrt{\text { A. } 48,000 ~ J}$
B. $24,000 \mathrm{~J}$
C. $16,000 \mathrm{~J}$
$\eta=1-T_{\mathrm{L}} / T_{\mathrm{H}}=1-300 / 400=1 / 4$
D. 9000 J
$\Rightarrow Q_{\text {inn }}=W / \eta$ $=12000 \mathrm{~J} \cdot 4=48000 \mathrm{~J}$
E. none of the above

Lykke til med eksamen
ag videre studier!

[^0]: b) Bare L
 C) $L \log p$
 D) $L, E \operatorname{og} p$

