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Picture the Problem Because the acceleration of the rocket varies with time, it is not
constant and integration of this function is required to determine the rocket’s velocity and
position as functions of time. The conditions on x and v at 7 = ( are known as initial

conditions.

(a) Integrate a(?) to find v(¥):

Integrate v(¢) to find x():

Using the initial conditions, find the
constants C and D:

(b) Evaluate v(5 s) and x(5 s) with
C=D=0andb=3m/s"
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v(t)= [a(t)di=b jt dt = Lbr* +C

where C, the constant of integration, can be
determined from the initial conditions.

x(t)= jv(t)dt = {[—;—btz +C|dr
=1b +Ct+D
where D is a second constant of

integration.
v0)=0 = C=0
and

x(0)=0 = D=0
x(t)=L1br’

.

w(58)= %—(3m/52 )(55)2 =|37.5m/s
and

#55)= %(3111/32)(55)3 =[62.5m

Picture the Problem The acceleration is a function of time; therefore it is not constant.
The instantaneous velocity can be determined by integration of the acceleration and the
average velocity from the displacement of the particle during the given time interval.
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(a) Because the acceleration is the
derivative of the velocity, integrate
the acceleration to find the
instantaneous velocity v(t).

Calculate the instantaneous velocity
using the acceleration given.

(b) To calculate the average
velocity, we need the displacement:

Because the velocity is the
derivative of the displacement,
integrate the velocity to find Ax.

Using the definition of the average
velocity, calculate v,,.
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a(t)zg = ()= v?dv': fa(e)ar

V=0 1,=0

w(t)=(0.2m/s’) ]t'dt'
and i

v(t) = (0.1m/s’ )i*

v(t) = %: x(t) = X(j‘)dx' = ].v(t')dt'

xo=0 to=0

x(t) = (0.1m/s°) tjt'z dr' = (0.1m/s’ )533—
and "

Ax = x(7s)—x(25s)
z®mmﬂgi1@£
' 3

=11.2m

Ax 112m _

vy 2.23m/s
At 5s

Determine the Concept Because the acceleration is a function of time, it is not constant.
Hence we’ll need to integrate the acceleration function to find the velocity as a function
of time and integrate the velocity function to find the position as a function of time. The
important concepts here are the definitions of velocity, acceleration, and average velocity.

(a) Starting from ¢, = 0, integrate the
instantaneous acceleration to obtain
the instantaneous velocity as a
function of time:

Froma = iv_
dr

it follows that

]'dv' = tj‘(ao +bt')dt'
v 0

and

v =v, +apt+1bt’




(b) Now integrate the instantaneous
velocity to obtain the position as a
function of time:

(¢) The definition of the average
velocity is the ratio of the
displacement to the total time
elapsed:

Note that v,, is not the same as that
due to constant acceleration:

General Problems
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From v = % it follows that

ifdx’ = ]'v(t')dt'

Xo to=0

= j(vg +ayt'+ —1-27— 1? )dt'

and

X =x,+ vyt +Lat? +1bt’

v = Ax  x-x, vol+%aot2 +%bt‘3
R A t

and

Ve =V, +%,_-a0t+%bt2

_ Yty

(vconstant acceleration >av 2

Vo +(v0 +a0t+=}bt2)
2
=y, ++at+1ibt’

FV,,

Picture the Problem The acceleration of the marble is constant. Because the motion is
downward, choose a coordinate system with downward as the positive direction. The
equation g.,, = (1 m)/(Af)’ originates in the constant-acceleration equation

Ax = v Af + ~;-a(At)z . Because the motion starts from rest, the displacement of the
marble is 1 m, the acceleration is the experimental value g,,, and the equation simplifies

t0 Zep = (1 m)/(AD.

Express the percent difference
between the accepted and
experimental values for the
acceleration due to gravity:

Using a constant-acceleration
equation, express the velocity of the
marble in terms of its initial
velocity, acceleration, and
displacement:

N g accepted g €Xp A
% difference = ——-—--—7-—

gacccpted

v; =v; +2aAy
or, because vp=0and a =g,
v; =2gAy
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(b) Draw a tangent line at the origin The tangent line appears to, at least
and measure its rise and run. Use approximately, pass through the point
this ratio to obtain an approximate (5, 4). Using the origin as the second point,

value for the slope at the origin:
Ax=4cm—-0=4cm

and
At=5s—-0=35s
Therefore, the slope of the tangent rise Ax 4cm
line and the velocity of the body as V(O) = un = A = 53 =| 0.800cm/s
it passes through the origin is
approximately:

(¢) Calculate the average velocity for the series of time intervals given by completing the
table shown below:

ty ! At Xo X Ax Vo= Ax/AL
()| () | (s) |(em) | (cm) | (cm) | (mvs)
0 6 6 0 434 | 4.34 0.723
0 3 3 0 2.51 | 2.51 0.835
0 2 2 0 .71 | 1L.71 0.857
0 1 1 0 |0.871 03871 0.871
0.1 051 05 0 ]0437 ] 0437 0.874
0 1025(025] 0 |0.219] 0219 0.875
(d) Express the time derivative of dx
the position: @ Awcosot
Substitute numerical values and dx
—=Awcos0=Aw
o dt
evaluate —at 7 = 0:
dt =(0.05m)0.1755)
=1 0.875cm/s
(e) Compare the average velocities As Az, and thus Ax, becomes small, the
from part (c) with the instantaneous value for the average velocity approaches
velocity from part (d): that for the instantaneous velocity obtained
in part (d). For Ar = 0.25 s, they agree to
three significant figures.
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Determine the Concept Because the velocity varies nonlinearly with time, the
acceleration of the object is not constant. We can find the acceleration of the object by
differentiating its velocity with respect to time and its position function by integrating the
velocity function. The important concepts here are the definitions of acceleration and
velocity.
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(a) The acceleration of the object is
the derivative of its velocity with
respect to time:

(b) Integrate the velocity with
respect to time from 0 to 7 to obtain
the change in position of the body:
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av d .
a= :i? = E[vm sm(a)t)]

=| @v,,, cos(wt)

Because a varies sinusoidally
with time it is not constant.

]dx’ = ][vm sin (wt')]dt’
md

X=Xy = [_ Tmex g0 (a)t')}
o

!

0

= = Vmax cos(a)t)+v—m3"—
1] o

or

X=X+ Z%[l - cos(a)t)]
o

Note that, as given in the problem
statement, x(0 s) = xo. :

Picture the Problem Because the acceleration of the particle is a function of its position,
it is not constant. Changing the variable of integration in the definition of acceleration
will allow us to determine its velocity and position as functions of position.

(@) Because a = dv/dt, we must
integrate to find v(¢). Because a is
given as a function of x, we’ll need
to change variables in order to carry
out the integration. Once we’ve
changed variables, we’ll separate
them with v on the left side of the
equation and x on the right:

Integrate from x, and v, to x and v:

Solve for v to obtain:

dy_dvde_ dv (o o),
dt dxdt dx

or, upon separating variables,

vy = (257 Jedx
i[v'dv' = J](2 s )x'dx'

2 2 2Y.2 2
v =V —(25 Xx —xo)

=2 +(2s2fx? - x2)
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We are given that x = bv, where dc x dx
b=1s. Substitute for v and iy =>di= b-x—

separate variables to obtain:

Integrate and solve for x(¢): t X 2

far=b j—‘f"-,-:.—:» (t-1,)= bln[i]
ty Xo X xO
and

*(r)=] xe "

(b) Differentiate twice to obtain v(¢) dx 1 -t5)1b
. V=—=—x€
and a(?): g B
and
dv 1 ("‘fo )b
a=—= —Txoe
dat b
Substitute the result in part (a) to 1
obtain the desired results: v(t) = Zx(t )

and

1
a(t) = -b-z—x(t)

SO

at) = —Il;v(t) = })~1~2-x(t)

Because the numerical value of b, expressed in SI units, is one, the
numerical values of g, v, and x are the same at each instant in time.
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Picture the Problem Because the acceleration of the rock is a function of time, it is not
constant. Choose a coordinate system in which downward is positive and the origin at
the point of release of the rock.

Separate variables in dv =ge™dt
a(t)y = advldt = ge’b’ to obtain:

Integrate from ¢, = 0, v, = 0 to some v ! . ,
later time ¢ and velocity v: V= Jdv’ = J‘ge—bt dt'= —'g; [e"bl ];
0 0 -
= i;"):(1 —e""): Ve (l —-e"”)
where

vterm =

g
b
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Separate variables in dy=v, (1 —e )dt

v=dy/dt= vtem(l - e'b’) to

obtain:

Integrate from ¢, =0, y, = 0 to some y '

later time ¢ and position y: J dy' = j Viem (1 —e )df
0 0

I3

I
yzvtem[t+z—e b’]

0

1%

il

t——&z““—(l——e‘b’)

term

This last result is very interesting. It says that throughout its free-fall, the object
experiences drag; therefore it has not fallen as far at any given time as it would have if it
were falling at the constant velocity, Viem.

On the other hand, just as the v
velocity of the object asymptotically y (’ large ) > Viermf — 3 > Viermf
approaches Vi, the distance it has
covered during its free-fall as a
function of time asymptotically
approaches the distance it would
have fallen if it had fallen with vy,
throughout its motion.

This should not be surprising because in
the expression above, the first term grows
linearly with time while the second term
approaches a constant and therefore
becomes less important with time.
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Picture the Problem Because the acceleration of the rock is a function of its velocity, it
is not constant. Choose a coordinate system in which downward is positive and the
origin is at the point of release of the rock.

Rewrite a = g — bv explicitly as a dv

differential equation: ar =g-bv

Separate the variables, v on the left, dv gt

¢ on the right: o —bv -

Integrate the left-hand side of this Yy t

equation from 0 to v and the right- J -= Idt'

hand side from 0 to £ g&—bv'
and
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Solve this expression for v.

Finally, differentiate this expression
with respect to time to obtain an
expression for the acceleration and
complete the proof.
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v=i§—(l—e"b')
a= %} =| ge™

Picture the Problem The skydiver’s acceleration is a function of her velocity; therefore
it is not constant. Expressing her acceleration as the derivative of her velocity, separating
the variables, and then integrating will give her velocity as a function of time.

(a) Rewrite a = g — v’ explicitly as a
differential equation:

Separate the variables, with v on the
left, and ¢ on the right:

Eliminate ¢ by using ¢ =

’*FMIOQ

Integrate the left-hand side of this
equation from 0 to v and the right-
hand side from 0 to #:

The integral can be found in integral
tables:

2
—=g-cv
a ¢

v-——————?=gtj.dt'=gf
0

vy tanh™ (v/v.) = gt
or
tanh™(v/v, )= (g /v, )t




