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13 .
Determine the Concept The terminal speed of a sky diver is given by v, = (mg/ b)",
where b depends on the shape and area of the falling object as well as upon the properties

of the medium in which the object is falling. The sky diver’s orientation as she falls
determines the surface area she presents to the air molecules that must be pushed aside.

(d) s correct.

14 e

Determine the Concept In your frame of
reference (the accelerating reference frame
of the car), the direction of the force must
point toward the center of the circular path
along which you are traveling; that is, in
the direction of the centripetal force that
keeps you moving in a circle. The friction
between you and the seat you are sitting on
supplies this force. The reason you seem
to be "pushed" to the outside of the curve is
that your body’s inertia "wants" , in
accordance with Newton’s law of inertia,
to keep it moving in a straight line—that is,
tangent to the curve.

*15

Determine the Concept The centripetal force that keeps the moon in its orbit around the
earth is provided by the gravitational force the earth exerts on the moon. As described by
Newton’s 3™ law, this force is equal in magnitude to the force the moon exerts on the

earth. | (d)is correct.

16 -

Determine the Concept The only forces acting on the block are its weight and the force
the surface exerts on it. Because the loop-the-loop surface is frictionless, the force it exerts
on the block must be perpendicular to its surface.

Point A: the weight is downward Free-body diagram 3
and the normal force is to the right.

Point B: the weight is downward, Free-body diagram 4
the normal force is upward, and the

normal force is greater than the

weight so that their difference is the

centripetal force.
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Point C: the weight is downward and Free-body diagram 5
the normal force is to the left.

Point D: both the weight and the Free-body diagram 2
normal forces are downward.

17 oo
Picture the Problem Assume that the drag force on an object is given by the Newtonian

formula F, = L+ CApv®, where 4 is the projected surface area, v is the object’s speed, p
is the density of air, and C a dimensionless coefficient.

Express the net force acting on the F.,=mg-F,=ma
falling object:
Substitute for Fp under terminal mg —1C4 PVT =0
speed conditions and solve for the
. or

terminal speed:

v 2mg

T CAp

Thus, the terminal velocity depends on the
ratio of the mass of the object to its surface
area.

For a rock, which has a relatively small surface area compared to its mass, the terminal
speed will be relatively high; for a lightweight, spread-out object like a feather, the -
opposite is true.

Another issue is that the higher the terminal velocity is, the longer it takes for a falling
object to reach terminal velocity. From this, the feather will reach its terminal velocity
quickly, and fall at an almost constant speed very soon after being dropped; a rock, if not
dropped from a great height, will have almost the same acceleration as if it were in free-
fall for the duration of its fall, and thus be continually speeding up as it falls,

An interesting point is that the average drag force acting on the rock will be larger than
that acting on the feather precisely because the rock’s average speed is larger than the
feather's, as the drag force increases as v’. This is another remmder that force is not the
same thing as acceleration.
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The definition of g4 is:

Apply Z F, =ma, to the box:
Solve for Fj:

Apply Z F, =ma, to the box:

Substitute numerical values in
equation (1) and evaluate py:

27 o

Picture the Problem Assume that the car
is traveling to the right and let the positive
x direction also be to the right. We can use
Newton’s 2™ law of motion and the
definition of 4 to determine the maximum
acceleration of the car. Once we know the
car’s maximum acceleration, we can use a
constant-acceleration equation to determine
the least stopping distance.

(a) Apply Z F. =ma, to the car:

Apply Z F, = ma, to the car and

solve for Fy:

Substitute (2) in (1) and solve for
and evaluate g, pax:

(b) Using a constant-acceleration
equation, relate the stopping
distance of the car to its initial
velocity and its acceleration and
solve for its displacement:

)

F,—w=ma,= 0 because a,= 0
F,=w=600N
F,—f. =ma,

or, because a, =0,
Fapp = f, =250N

250
==

600N

Z

0.417

P —'<
V

=]

) — — —x

YW

= fomax = —HF, =ma, )

F,-w=ma,=0
or, because a, = 0,

Fy,=mg @

ug= (0.6)9.81m/s%)
= [5.89m/s?

ax,max =

v =v] +2aAx
or, because v=10,
2

2a

Ax =
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Substitute numerical values and - (30m/sy

. = =|76.4m
evaluate Ax: 2‘_ 5.89m/s> j
*28 o
Picture the Problem The free-body y
diagram shows the forces acting on the b
drive wheels, the ones we’re assuming AFn
support half the weight of the car. We can -
use the definition of acceleration and apply JA
Newton’s 2™ law to the horizontal and O —x
vertical components of the forces to
determine the minimum coefficient of
friction between the road and the tires. Y \omg
(@) | Because y, > p, f will be greater if the wheels do not slip.
(b) Apply )" F, = ma, to the car: fo=uF, =ma, (1
ApplyZFy = ma, to the car and F,—img=ma,
solve for F,: or, because a, = 0,

F o =5mg

Substituting for Fn in equation (1)

THUmg =ma.or u = 2.

and solving for g yields:

The acceleration of the car is given a = Av _ (90 km/h)(l 000 m/km)

by: .Y, 12s
=2.08m/s’

Subst‘itute numerical values in 4= 2!2.08 m/s’ ) _[0a

‘equation (2) and evaluate y4: $ 9.81m/s>

29 o

Picture the Problem The block is in
equilibrium under the influence of the
forces shown on the free-body diagram.
We can use Newton’s 2™ law and the
definition of x4 to solve for £, and F.
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Substitute numerical values and evaluate Axp,:

9.16m

A = ~ (80km/h)’ (1000 km/m )’ (1h/3600s)* _
e 2(-2.943m/s?)

30 e

Picture the Problem We can find the
coefficient of friction by applying
Newton’s 2" law and determining the
acceleration from the given values of
displacement and initial velocity. We can
find the displacement and speed of the
block by using constant-acceleration

equations. During its motion up the incline,
the sum of the kinetic friction force and a =0
component of the object’s weight will xg=0
combine to bring the object to rest. When it
is moving down the incline, the difference

between the weight component and the friction force will be the net force.

Vo~ 14 mjg

(@) Draw a free-body diagram for A\
the block as it travels up the incline: A R
S 37°
"k \
mg
Apply D F = mi to the block: D F, =-f —-mgsin37°=ma (1)
and
ZFy =F, —mgcos37°=0 )
 Substitute f; = 4, and F, from (2) _-gsin37°-a
. = S
in (1) and solve for g4: gcos37 3)
=—tan37°——2
gcos37°
Using a constant-acceleration v =v} +2aAx

equation, relate the final velocity of
the block to its initial velocity,
acceleration, and displacement:
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Solving for g yields:

Substitute numerical values and
evaluate a:

Substitute for a in (3) to obtain:

(b) Use the same constant-
acceleration equation used above but
with v; = 0 to obtain:

Solve for Ax to obtain:

Substitute numerical values and
evaluate Ax:

(c) When the block slides down the
incline, £ is in the positive x
direction:

Solve equation (3) for a to obtain:

Substitute numerical values and
evaluate a:

Use the same constant-acceleration
equation used in part (b) to obtain:

Set vy = 0 and solve for v:

Substitute numerical values and
evaluate v:

v
2Ax
_ (5.2m/s) —(14m/s) — ~10.6m/s>
2(8m)
-10.6m/s’
=—tan37° -
A= g S /s Kos3 T
= 0.599
0=1v7 +2aAx
2
Ax =20
2a
~(14m/sy

Ax= =1925m
2‘—-10.6111/32 )

ZF; = f, —mgsin37° =ma

and
ZFy =F, —mgcos37°=0
a = g(u, cos37°—sin37°)

a =(9.81m/s* )[(0.599)cos37° ~sin 37°]
=—1.21m/s’

v =} +2alAx

v =+/2aAx

v=42(-1.21m/5*)(~9.25m)
=|4.73m/s
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Apply ZF = ma to block 2:

Letting 77 = T, = T, use the
definition of the kinetic friction
force to eliminate f; and F,;
between the equations for block 1
and f, and F,; between the
equations for block 2 to obtain:

Add equations (1) and (2) to
eliminate 7" and solve for a:

(b) Rewrite equations (1) and (2) by
dividing both sides of (1) by m, and
both sides of (2) by m;, to obtain.

Subtracting (4) from (3) and
rearranging yields:

45

ZFx =mgsind—T, - f,, =ma
and
ZFy =F,,-mgcosd=0

ma=mgsin@+T — umgcosd
and
mya=m,gsind -T — yu,m,gcos

+
ae g(sine ff_"z_ﬂ_e)
m1 + m2

. T
a=gsin@+—-p gcosl
m,
and

a=gsm0—I——y2gcosﬁ
m,

T= ( i ](,u,——yz)gcosﬁ

m, —m,

If 4, = 1,, T =0 and the blocks move down the incline with the same
acceleration of g(sin9 — [ COS 9) Inserting a stick between them can't
change this; therefore, the stick must exert no force on either block.

80

Picture the Problem The pictorial
representation shows the orientation of the
two blocks on the inclined surface. Draw
the free-body diagrams for each block and
apply Newton’s 2" law of motion and the
definition of the static friction force to each
block to obtain simultaneous equations in
G.and T.

M

)]

3)

4




(a) Draw the free-body diagram for
the lower block:

Apply Y F = mito the block:

The relationship between f;; and F,;
is:

Eliminate f;; and F,,; between (1),
(2), and (3) to obtain:

Draw the free-body diagram for the
upper block:

Apply Zf’ = md to the block:

The relationship between £ and F,,»
is:

- Eliminate £, ; and F,; between (5),
(6), and (7) to obtain: '

Add equations (4) and (8) to
eliminate 7 and solve for 6,

Substitute numerical values and
evaluate 4.;
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’"1_8:
D F.=mgsing,—f,,-T=0 (1)
and

ZFy =F,;—mgcosf, =0 )

fs,x = s 1 Fq 3)

mgsing, — p ,;rmgeosf, — T=0 4)

mag
Y F,=T+mgsing,-f,,=0 (5)
and

ZFy =F,-mgcosd, =0  (6)

Js2 = soFn @

T+ mygsing, — i, ;mgeosf, =0  (8)

9 - tan—l ~ﬂs,1m1 + ﬂs,ZmZ }

m;, +m,

9 = tan” [(0.4)(0.2kg)+(0.6)(0.1kg)
° 0.1kg +0.2kg

-

=] 25.0°
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(b) Because 6, is greater than the T=m g(sin 0. — 4, €OS HC)
angle of repose
(tan”'(z41) = tan"'(0.4) = 21.8°)
for the lower block, it would slide if
T=0. Solve equation (4) for T:

Substitute numerical values and evaluate T

T = (0.2kg)(9.81m/s* )fsin25° - (0.4)cos25°] = [ 0.118N

46 o

Picture the Problem The pictorial
representation shows the orientation of the
two blocks with a common acceleration on
the inclined surface. Draw the free-body
diagrams for each block and apply
Newton’s 2™ law and the definition of the
kinetic friction force to each block to
obtain simultaneous equations in g and 7.

(a) Draw the free-body diagram for
the lower block:

Apply ZF‘ = ma to the lower ZR =mgsin20°~ £, ,~T=ma (1)
block: ~and

> F,=F, —mgcos20°=0 )
Express the relationship between f; | Jir = M Fan 3)
and F;:
Eliminate f ; and F,; between (1), m, g sin20° - 1 ;m, g cos 20°

(2), and (3) to obtain: T =mga )
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59 ecss

Picture the Problem The free-body
diagram shows the forces acting on the 0.5
kg block when the acceleration is a
minimum. Note the choice of coordinate
system is consistent with the direction of

F. Apply Newton’s 2™ law to the block
and solve the resulting equations for gy,
and apay.

(a) Apply Zf' =ma to the 0.5-kg ZFx =F,sinf - f, cosd =ma @))

block: and
Y F,=F,cosf+f,sinf-mg=0 (2)

Under minimum acceleration, Somax = HF, 3)
Js= fs.max- Express the relationship

between f; s, and F:

Substitute f; ma, for £; in equation (2) Fo= mg

and solve for F,:

Substitute for F;, in equation (1) and
solve for a = ap;,:

Substitute numerical values and

evaluate ay,:

Treat the block and incline as a
single object to determine Fyy,:

"To find the maximum acceleration,
reverse the direction of js and apply

ZF = ma to the block:

Proceed as above to obtain:

" cosf+ pu,sind

sin@ -y, coséd

cos@ + y. sind
Gy = (0.81mys7) 3225 (08) 035
c0s35°+(0.8)sin35
=-0.627 m/s’

Fain = Myo@in = (2.5 kg)( —0.627 m/s?)
=] -1.57N

ZF; =F, sinf+ f,cosfd =ma 4)
and
ZFy =F,cos@— f sin@-mg=0 (5)

sin@ + u, cosé
cos@ -y sind
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Substitute numerical values and
evaluate ap,,:

Treat the block and incline as a single
object to determine Fi,,:

(b) Repeat (a) with g = 0.4 to obtain:

60 o

Picture the Problem The kinetic friction
force f is the product of the coefficient of
sliding friction z4 and the normal force F,
the surface exerts on the sliding object. By
applying Newton’s 2™ law in the vertical
direction, we can see that, on a horizontal
surface, the normal force is the weight of
the sliding object. Note that the
acceleration of the block is opposite its
direction of motion.

(a) Relate the force of kinetic
friction to z4 and the normal force
acting on the sliding wooden object:

Substitute v = 10 m/s and evaluate
i

(b) Substitute v = 20 m/s and
evaluate fi:

61 '

218in35° +{0.8)cos35°
?¢0s35° - (0.8)sin35°

G = (9.81m/5

=33.5m/s’

Fnax = Miolmax = (2.5 kg)(33.5 m/s?)

- [83.8N
F, =[575N |and F,, =[37.5N
y
|
! Yl
K
<« -~
Y mg
0.11
fo=mF, = mg
CT T 1+23x10?)

_ 0.11(100kg)(9.81m/s2) _[T03N

(1+23x10*(0mss)* )

_ 0.11(100kg)(9.81mys?)
(1+2.3x10% (20m/s)? )’

=1 90.5N

Picture the Problem The pictorial representation shows the block sliding from left to
right and coming to rest when it has traveled a distance Ax. Note that the direction of the
motion is opposite that of the block’s acceleration. The acceleration and stopping
distance of the blocks can be found from constant-acceleration equations. Let the
direction of motion of the sliding blocks be the positive x direction. Because the surface
is horizontal, the normal force acting on the sliding block is the block’s weight.
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Use the right triangle in the diagram
torelate r, L, and &

Eliminate T and r between equations
(1), (2), and (3) and solve for v:

Substitute numerical values and
evaluate v:

67 -

Picture the Problem The free-body
diagram showing the forces acting on the
stone is superimposed on a sketch of the
stone rotating in a horizontal circle. The
only forces acting on the stone are the
tension in the string and the gravitational
force. The centripetal force required to
maintain the circular motion is a
component of the tension. We’ll solve the
problem for the general case in which the
angle with the vertical is 8 by applying
Newton’s 2™ law of motion to the forces
acting on the stone.

(a) Apply ZF = md to the stone:

Eliminate T between equations (1)
and (2) and solve for v:

Substitute numerical values and
evaluate v:

(b) Solve equation (2) for T:

Substitute numerical values and
evaluate T:

r = Lcos@ 3

v=./gLcotfcosl

v = /(9.81m/s? )(0.8m)cot 20°cos 20°
=| 4.50m/s

ZFx =Tsinf = ma, =m> €))
r

and

sz =Tcosf-mg =0 )

v=,/rgtanf

v = /(0.35m)(9.81m/s” Jtan30°
=|1.41m/s

=8
cosé

;- 075ke)(0.81m/s’)
co0s30°

=| 8.50N
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Picture the Problem The diagram to the
right has the free-body diagram for the
child superimposed on a pictorial
representation of her motion. The force her
father exerts is F and the angle it makes
with respect to the direction we’ve chosen
as the positive y direction is 6. We can
infer her speed from the given information
concerning the radius of her path and the
period of her motion. Applying Newton’s
2" law will allow us to find both the

direction and magnitude of F .
Apply Y F = mii to the child: SF =Fsin0=mf-
) r
and
ZFy =Fcos@-mg=0
Eliminate F between these equations 9 NS
and solve for @ to obtain: = tan _I;g—
Express v in terms of the radius and v= _2_71_7‘_
period of the child’s motion: T
Substitute for v in the expression for Ll 4
. 6 = tan
&to obtain: gT?
Substitute numerical values and g 4r* (0.75 rn) _[3533°
evaluate 6 (9.81m/s )(1.55) :
Solve the y equation for F: F=_"8
cosd
Substitute numerical values and Fe (25 kg)(9.8 1m/s? ) _[ 210N
evaluate F: c0s53.3°
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Picture the Problem The force F the
passenger exerts on the armrest of the car
door is the radial force required to maintain
the passenger’s speed around the curve and
is related to that speed through Newton’s
2" law of motion.

Apply Z F, =ma, to the forces

acting on the passenger:

Solve this equation for v:

Substitute numerical values and
evaluate v:

%85  oee
Picture the Problem The forces acting on
the bicycle are shown in the force diagram.
The static friction force is the centripetal
force exerted by the surface on the bicycle
that allows it to move in a circular path.

i';u + _f's makes an angle 6 with the vertical

direction. The application of Newton’s 2™
law will allow us to relate this angle to the
speed of the bicycle and the coefficient of
static friction.

“(a) Apply ZF = ma to the bicycle:

Relate £} and fto €
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y
‘ —
Fy
F
—X
mg
2
F=mlL
rkF
v=,|—
m
V= -8-9_“1—22_0__}{__ = 15.9m/s
70kg
and | (a)is correct.

and
> F,=F,-mg=0
mv’
2
o=t s 7
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Solve for v: v=,/rgtanéd

Substitute numerical values and

evaluate v:

=|7.25m/s
(b) Relate f; to s and F: Jo =t fomm =S HME
Solve for 4 and substitute for f; to _2f 20’
obtain: = mg  rg
Substitute numerical values and o 2(7 25 m/s)2 3
evaluate pi, %= om)o stmis?)

86 oo
Picture the Problem The diagram shows
the forces acting on the plane as it flies in a
horizontal circle of radius R. We can apply
Newton’s 2™ law to the plane and
eliminate the lift force in order to obtain an
expression for R as a function of v and 6,

Apply ZF = ma to the plane:

v =/(20m)9.81m/s? )tan15°

0.536

2

v
F =F. sin@=m—
Z x Lift R

and
ZFy = Fis cos@-mg =0

Eliminate Fj;z between these tan @ = v
equations to obtain: h Rg
Solve for R: _ v?
gtand
Substitute numerical values and km 1n Y
evaluate R: 480 —h—— x 36005

9.81m/s? Jtand0°

2.16km




Substitute numerical values and
evaluate vy,

Drag Forces

92 -
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Vowe = +/(0.8243)(30m)(9.81m/s?)
=[15.6m/s = 56.1km/h

Picture the Problem We can apply Newton’s 2™ law to the particle to obtain its
equation of motion. Applying terminal speed conditions will yield an expression for b
that we can evaluate using the given numerical values.

Apply ZFy = ma, to the particle:

When the particle reaches its
terminal speed v =wand g, = 0:

Solve for b to obtain:

Substitute numerical values and
evaluate b:

93 -

mg—bv=ma,

mg—bv, =0
p="8
v

(10"kg)(9.81mys?)
3%x107* m/s

3.27x10” kg/s

Picture the Problem We can apply Newton’s 2° law to the Ping-Pong ball to obtain its
equation of motion. Applying terminal speed conditions will yield an expression for b

that we can evaluate using the given numerical values.

Apply Z F, =ma, to the Ping-
Pong ball:

When the Ping-Pong ball reaches its

terminal speed v = viand a, = 0:

Solve for b to obtain:

mg —bv’ =ma,

mg—bv} =0
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Substitute numerical values and
evaluate b:

94 o

- (2:3x10° ke )(0.81m/s’)
(Omss)

2.79%10™ kg/m

]

Picture the Problem Let the upward direction be the positive y direction and apply

Newton’s 2 law to the sky diver.

(a) Apply ZFy =ma, to the sky

diver:

Substitute numerical values and
evaluate Fy:

(b) Substitute F; = b, in equation
(1) to obtain:

Solve for b:

Substitute numerical values and
evaluate b:

95 o
Picture the Problem The free-body
diagram shows the forces acting on the car
as it descends the grade with its terminal
velocity. The application of Newton’s 2™
law with a = 0 and Fj equal to the given
function will allow us to solve for the
terminal velocity of the car.

Apply ZFx = ma, to the car:

Substitute for F4 to obtain:

Fy—mg=ma,

or, because a, = 0,

Fy=mg ey
F, = (60kg)(9.81m/s*)=[ 589N
bv} = mg
mg F
p="E T
Vi Vi
- OON G sskgm
(25m/s)
Y
/
F,
By o ~o
o
/
mig

mgsin@ - F, = ma,

or, because v = v, and a, =0,
mgsin@—F; =0

mgsin«9—100N—(l.2N-s2 /mz)vt2 =0




