
THE STABILITY
OF THE BICYCLE
Tired of quantum electrodynamics, Brillouin
zones, Regge poles? Try this old, unsolved problem
in dynamics-how does a bike work?

David E. H. Jones

ALMOST EVERYONE can ride a bicycle,
yet apparently no one knows how they
do it. I believe that the apparent
simplicity and ease of the trick con-
ceals much unrecognized subtlety, and
I have spent some time and effort try-
ing to discover the reasons for the
bicycle's stability. Published theory
on the topic is sketchy and presented
mainly without experimental verifica-
tion. In my investigations I hoped to
identify the stabilizing features of
normal bicycles by constructing ab-
normal ones lacking selected features
(see figure 1). The failure of early
unridable bicycles led me to a care-
ful consideration of steering geometry,
from which—with the aid of computer
calculations—I designed and con-
structed an inherently unstable bi-
cycle.

The nature of the problem

Most mechanics textbooks or treatises
on bicycles either ignore the matter of
their stability, or treat it as fairly triv-
ial. The bicycle is assumed to be
balanced by the action of its rider who,
if he feels the vehicle falling, steers
into the direction of fall and so tra-
verses a curved trajectory of such a
radius as to generate enough centrif-
ugal force to correct the fall. This
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"UNRIDABLE" BICYCLES. David
Jones is seen here with three
of his experimental machines, two of
which turned out to be ridable after all.
At top of this page is URB I,
with its extra counter-rotating front wheel
that tests the gyroscopic theories
of bicycle stability. At left is URB III,
whose reversed front forks
give it great stability when pushed
and released riderless.
URB IV (immediately above) has its
front wheel mounted ahead of the usual
position and comes nearest to being
"unridable." —FIG. 1

theory is well formalised mathemati-
cally by S. Timoshenko and D. H.
Young,1 who derive the equation of
motion of an idealized bicycle, ne-
glecting rotational moments, and dem-
onstrate that a falling bicycle can be
saved by proper steering of the front
wheel. The theory explains, for ex-
ample, that the ridability of a bicycle
depends crucially on the freedom of
the front forks to swivel (if they are
locked, even dead ahead, the bicycle
can not be ridden), that the faster a
bicycle moves the easier it is to ride
(because a smaller steering adjust-
ment is needed to create the centrif-
ugal correction) and that it can not be
balanced when stationary.

Nevertheless this theory can not be
true, or at least it can not be the whole
truth. You experience a powerful
sense, when riding a bicycle fast, that
it is inherently stable and could not
fall over even if you wanted it to.
Also a bicycle pushed and released
riderless will stay up on its own,
traveling in a long curve and finally
collapsing after about 20 seconds,
compared to the 2 sec it would take
if static. Clearly the machine has a
large measure of self-stability.

The next level of sophistication in
current bicycle-stability theory in-
vokes the gyroscopic action of the
front wheel. If the bike tilts, the
front wheel precesses about the steer-
ing axis and steers it in a curve that,

as before, counteracts the tilt. The
appeal of this theory is that its action
is perfectly exemplified by a rolling
hoop, which indeed can run stably for
just this reason. A bicycle is thus as-
sumed to be merely a hoop with a
trailer.

The lightness of the front wheel
distresses some theorists, who feel that
the precession forces are inadequate
to stabilize a heavily laden bicycle.2"'5

K. I. T. Richardson4 allows both the-
ories and suggests that the rider him-
self twists the front wheel to generate
precession, hence staying upright. A
theory of the hoop and bicycle on
gyroscopic principles is given by R. H.
PearsalF1 who includes many rotational
moments and derives a complex
fourth-order differential equation of
motion. This is not rigorously solved
but demonstrates on general grounds
the possibility of self-righting in a
gyroscopically stable bicycle.

A non-gyroscopic liicycie

It was with vague knowledge of these
simple bicycle theories that I began
my series of experiments on bicycle
stability. It occurred to me that it
would be fun to make an unridable
bicycle, which by canceling the forces
of stability would baffle the most ex-
perienced rider. I therefore modified
a standard bicycle by mounting on the
front fork a second wheel, clear of the
ground, arranged so that I could spin
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FRONT-FORK GEOMETRY. On left is a normal bicycle. Center shows URB III with reversed forks
giving a negative front projection, and on right is URB IV with extended front projection. —FIG. 2

it against the real front wheel and so
oppose the gyroscopic effect. This
creation, "Unridable Bicycle MK I"
(URB I), unaccountably failed; it
could be easily ridden, both with the
extra wheel spinning at high speed in
either direction and with it stationary.
Its "feel" was a bit strange, a fact I
attributed to the increased moment of
inertia about the front forks, but it did
not tax my (average) riding skill even
at low speeds. The result resolves the
ambiguity admitted by Richardson:
the gyroscopic action plays very little
part in the riding of a bicycle at nor-
mally low speeds.

This unexpected result puzzled me.
If the bicycle, as seemed likely, is a
hoop with a trailer but is not gyro-
scopic, perhaps the hoop is not gyro-
scopic either? I repeated the experi-
ment of URB I on a hoop by con-
structing one with an inner counter-
rotating member, and this collapsed
gratifyingly when I tried to roll it.
The hoop is a bona fide gyroscope.

Then I tried to run URB I without
a rider, and its behavior was quite un-
ambiguous. With the extra wheel
spinning against the road wheels, it
collapsed as ineptly as my nongyro-
scopic hoop; with it spinning the same
way it showed a dramatic slow-speed
stability, running uncannily in a slow,
sedate circle before bowing to the in-
evitable collapse.

These results almost satisfied me.
The light, riderless bicycle is stabi-
lized by gyroscopic action, whereas
the heavier ridden model is not—it re-
quires constant rider effort to main-

tain its stability. A combination of
the simple theories accounts neatly
for all the facts. But the problem of
why a ridden bicycle feels so stable,
if in fact it is not, remains. There was
one more crucial test: Could URB I
be ridden in its disrotatory mode
"hands off"? For about the only sen-
sible theory for riding with "no hands"
supposes that the rider tilts the frame
by angular body movements and thus
steers by the resulting front-wheel pre-
cession.3

Gingerly, and with great trepida-
tion, I tried the experiment—downhill,
to avoid complicating the effort with
pedalling. URB I is not an easy bi-
cycle to ride "hands off" even with the
front wheel static; it somehow lacks
balance and responsiveness. In the
disrotatory mode it was almost impos-
sible and invited continual disaster,
but it could, just, be done. I was thus
led to suspect the existence of an-
other force at work in the moving bi-
cycle.

More theories

In the preliminary stages of this inves-
tigation, I had pestered all my ac-
quaintances to suggest a theory of the
bicycle. Apart from the two popular
theories that I have mentioned al-
ready, I obtained four others, which
I shall call theories 3, 4, 5 and 6:

3. The bicycle is kept upright by
the thickness of its tires (that is,
it is a thin steamroller).

4. When the bicycle leans, the
point of contact of the front tire
moves to one side of the plane of

the wheel, creating a frictional
torque twisting the wheel into
the lean and stabilizing the bi-
cycle, as before, by centrifugal
action.

5. The contact point of the bicycle's
front tire is ahead of the steering
axis. Turning the front wheel
therefore moves the contact point
with the turn, and the rider uses
this effect, when he finds himself
leaning, to move his baseline
back underneath his center of
gravity.

6. The contact point of the bi-
cycle's tire is behind the steering
axis. As a result, when the bi-
cycle leans a torque is de-
veloped that turns the front
wheel.

I suspect that theory 3 is not really
serious. Theories 5 and 6 raise the
question of steering geometry, which
I was later to look at in this work-
note that the gyro theory is silent on
why all front forks are angled and all
front forks project forward from them,
To test this matter I made URB II.

URB II had a thin front wheel, only
one inch in diameter (an adapted fur-
niture castor) mounted dead in line
with the steering axis, to test any
steering-geometry theory. It looked
a ludicrous contraption. URB II was
indeed hard to ride, and collapsed
readily when released, but this was at
least in part because it could negoti-
ate no bump more than half an inch
high. The little front wheel also got
nearly red hot when traveling fast.

I abandoned URB II as inconclu-
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sive, but preferred theory 6 to theory
5, because in all actual bicycles the
front wheel's contact point is' behind
the intersection of the steering axis
with the ground. Theory 6 is also
advocated by the only author who
supports his hypothesis with actual
measurements.11 But I could not see
why this force should vanish, as it
has to, once the bicycle is traveling
in its equilibrium curve. I had grave
suspicions of theory 4, for surely this
torque acting across less than half the
width of the tire would have a very
small moment, and would depend cru-
cially on the degree of inflation of the
tire? Besides, I did not want nasty
variable frictional forces intruding
into the pure, austere Newtonian bi-
cycle theory towards which I was
groping.

Steering geometry

The real importance of steering geom-
etry was brought home to me very
dramatically. I had just completed a
distressing series of experiments in-
volving loading URB I, with or with-
out its extra gyro wheel, with some
30 pounds of concrete slabs and send-
ing it hurtling about an empty park-
ing lot (there are some tests one can
not responsibly carry out on public
roads). The idea was to see if the ex-
tra weights—projecting from the front

of the frame to have the maximal ef-
fect on the front wheel—would pre-
vent the gyro effect from stabilizing
the bicycle, as anticipated from the
difference between ridden and rider-
less bikes. It appeared that the
weights made the bicycle a little less
stable, and the counter-rotating wheel
still threw it over almost immediately.
But the brutal effects on the hapless
machine as it repeatedly crashed to
earth with its burden had me straight-
ening bent members and removing
broken spokes after almost every run.

It occurred to me to remove die
handlebars to reduce the moment of
inertia about the steering axis; this
meant removing the concrete slabs
and the brake assembly, which inci-
dentally enabled the front wheel to be
turned through 180 deg on the steer-
ing axis, reversing the front-fork geom-
etry (see figure 2). I had tried this
experiment once before, calling the
result URB III; that machine had
been strangely awkward to wheel or
ride, and I had noted this result as
showing that steering geometry was
somehow significant. Idly I reversed
the forks of the bike and pushed it
away, expecting it to collapse quickly.
Incedibly, it ran on for yards before
falling over! Further tests showed
that this new riderless bicycle was
amazingly stable. It did not merely

Plane of
bicycle

Vertical plane

Hub of
front wheel

Heights H
calculated by BICYC

A TRICKY TRIGONOMETRICAL PROBLEM. We need to know H, the height of
the forkpoint from the ground, for a leaning bicycle. Subroutine BICYC calculates
both the vertical height and the height in the plane of the bike.

run in a curve in response to an im-
posed lean, but actively righted itself
—a thing no hoop or gyro could do.
The bumps and jolts of its progress
did not imperil it, but only as it
slowly lost speed did it become un-
stable. Then it often weaved from
side to side, leaning first one way and
then the other before it finally fell
over. This experiment convinced me
that the forces of stability were "hunt-
ing"—overcorrecting the lean at each
weave and ultimately causing col-
lapse. Once or twice the riderless
disrotatory URB I had shown mo-
mentary signs of the same behavior in
its brief doomed career.

Why does steering geometry mat-
ter? One obvious effect is seen by
wheeling a bicycle along, holding it
only by the saddle. It is easy to steer
the machine by tilting the frame,
when the front wheel automatically
steers into the lean. This is not a
gyroscopic effect, because it occurs
even if the bike is stationaiy. A little
study shows that it occurs because the
center of gravity of a tilted bicycle can
fall if the wheel twists out of line. So
here was a new theory of bicycle sta-
bility—the steering is so angled that as
the bike leans, the front wheel steers
into the lean to minimise the ma-
chine's gravitational potential energy.
To check this theory I had to examine
the implications of steering geometry
veiy seriously indeed.

Computerized bicycles

It turns out that defining the height of
the fork point of a bicycle in terms of
the steering geometry and angles of
lean and of steer (figure 3) is a re-
markably tricky little problem. In
fact I gave it up after a few attempts
and instead wrote a Fortran subrou-
tine, "BICYC," that solved the simul-
taneous trigonometrical equations
iteratively and generated all the re-
quired dimensions for me. Armed
with BICYC, I could now create all
sorts of mad bicycles on the computer
and put them through their steer-and-
lean paces. The first few runs were
most encouraging; they showed that
with normal bicycle geometry, tilting
the frame did indeed ensure that the
center of gravity had its minimal ele-
vation with the wheel twisted into the
tilt. This had the makings of a really
good theory. I hoped to prove that,
for the observed steering geometry,
the steering angle for minimal center-
of-gravity height increased with the
angle of lean by just the factor needed
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to provide perfect centrifugal stability,
and that was why all bicycles have
more or less the same steering geom-
etry. As for the strange behavior of
URB III, awkward to ride but in-
credibly stable if riderless, perhaps
HICYC would provide a clue.

But further calculations shattered
my hopes. Even with the bicycle
dead upright, the forkpoint fell as the
wheel turned out of plane (thus neatly
disproving the contention of refer-
ence 7 that a bicycle tends to run true
because its center of gravity rises with
any turn out of plane), and the mini-
mal height occurred at an absurdly
large steering angle, 60 deg. Even
worse, as the bike tilted, this minimum
occurred at angles nearer and nearer
the straight-ahead position (figure 4)
until at 40 deg of tilt the most stable
position was only 10 deg out of plane
(these values are all for a typical ob-
served steering geometry). Clearly

the tilting wheel never reaches its
minimal-energy position, and the
minimum can not be significant for de-
termining the stability of the bicycle.

I looked instead at the slope of the
height versus steering-angle curve at
zero steering angle, because this slope
is proportional to the twisting torque
on the front wheel of a tilted bike.
Then, if H is the height of the fork-
point, the torque varies as —dll/da at
small values of a, the steering angle.

The curves in figure 4 show clearly
that dU/da varies linearly with lean
angle L for small angles of lean. The
more the bike leans, the bigger is the
twisting torque, as required. The
constant of proportionality for this
relationship is cPH/dadL, and the
sign convention I adopted implies that
a bicycle is stable if this parameter is
negative. That is, for stability the
forkpoint falls as the wheel turns into
the lean when the bike is tilted.

30 - 2 0 -10 0 10 20
STEERING ANGLE,-, (DEG)

30 40

COMPUTERIZED BICYCLES. These data, from BICYC output, show that the mini-
mal height of the forkpoint occurs nearer to the straight-ahead position for greater
angles of lean. Note also that dH/da varies linearly with lean angle L for small L.
Curves, computed for typical steering geometry (20-deg fork angle, 0.2 radii front
projection), are vertically staggered for clarity. FIG. 4

I therefore computed d'2H/dadL
for a wide range of steering geom-
etries, and drew lines of constant sta-
bility on a diagram connecting the two
parameters of steering geometry-the
angle of the front-fork steering axis
and the projection of the wheel cen-
ter ahead of this axis. I then plotted
on my stability diagram all the bi-
cycles I could find—ranging from
many existing models to old high-
wheeled "penny-farthings" to see if
they supported the theory.

The results (figure 5) were im-
mensely gratifying. All the bicycles I
plotted have geometries that fall into
the stable region. The older bikes are
rather scattered but the modern ones
are all near the onset of instability de-
fined by the d°-H/dadL = 0 line.
This is immediately understandable.
A very stable control system responds
sluggishly to perturbation, whereas
one nearer to instability is more re-
sponsive; modern bicycle design has
emphasized nimbleness and maneu-
verability. Best of all, URB III comes
out much more stable than any com-
mercial bike. This result explains
both its wonderful self-righting prop-
erties and also why it is difficult to
ride—it is too stable to be steered. An
inert rider with no balancing reflexes
and no preferred direction of travel
would be happy on URB III, but its
characteristics are too intense for easy
control.

This mathematical exercise also
made it plain that the center-of-gravity
lowering torque is developed exactly
as shown in figure 6, and is identical
with that postulated in reference 6.
But it does not vanish when the bi-
cycle's lean is in equilibrium with
centrifugal force, as therein supposed
(BICYC calculated the height of the
forkpoint in the plane of the bicycle-
the "effective vertical"—to allow for
this). It can only vanish when the
contact point of the front wheel is
intersected by the steering axis, which
BICYC shows clearly is the condition
for minimal height. There is thus an
intimate connection between the
"trail" of a bicycle, as defined in figure
6, and d-H/dadL; in fact the d-H/da-
dL line in figure 4 coincides with the
locus of zero trail.

Two further courses of action re-
mained. First, I could make URB IV
with a steering geometry well inside
the unstable region, and second, I had
to decide what force opposes the
twisting torque on a bike's fr°nt

wheel and prevents it reaching
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STABLE AND UNSTABLE BICYCLES. On this plot of fork angle versus front pro-
jection the d2H/dadL lines are lines of constant stability. Grey area shows the unstable
region. Point 1 is a normal modern bicycle; 2 is a racing bike. 3 and 4 are high-wheel-
ers (or "penny-farthings") from the 1870's. Point 5 is an 1887 Rudge machine, and 6
is a Lawson "Safety" of 1879. Point 7 is URB III, and point 8, the only unstable
bicycle, is of course URB IV. —FIG. 5

BICYC's predicted minimal center-of-
gravity position.

Self-centering

Let us consider the second point
first; I was looking for some sort of
self-centering in a bicycle's steering.
Now this is well known in the case of
four-wheeled vehicles: self-centering
is built into all car steering systems,
and various self-righting torques such

Fork axis

Trail
distance

Sideways force on tire

as "pneumatic trail" are described by
automobile engineers. Once again
nasty variable frictional forces were
rearing their ugly heads! But how
could I check whether a bicycle wheel
has self-centering? I examined a
child's tricycle for this property, releas-
ing it at speed and, running alongside
it, giving the handlebars a blow. It
certainly seemed to recover quickly
and continue in a straight line, but
unfortunately the tricycle (being free
of the requirement of two-wheeled
stability) has a different steering
geometry.

So I made an experimental fixed-

lean bicycle by fastening an extra
"outrigger" wheel to the rear of the
frame, converting it to an asymmetric
tricycle. Adjustment of the outrigger
anchorage could impose any angle of
lean on the main frame. This ma-
chine was very interesting. Initially
I gave it 15 deg of lean, and at rest
the front wheel tilted to the 40-deg
angle predicted by BICYC. When in
motion, however, the wheel tended to
straighten out, and the faster the bike
was pushed the straighter did the
front wheel become. Even if the ma-
chine was released at speed with the
front wheel dead ahead it turned to
the "equilibrium" angle for that speed
and lean—another blow for gyro the-
ory, for with the lean fixed there can
be no precessional torque to turn the
wheel. So clearly there is a self-
centering force at work. It is unlikely
to be pneumatic trail, for the equilib-
rium steering angle for given condi-
tions appears unaltered by complete
deflation of the front tire. Now I had
encountered a very attractive form of
self-centering action, not depending
directly on variable frictional forces,
while trying the naive experiment of
pushing a bicycle backwards. Of
course it collapsed at once because the
two wheels travel in diverging direc-
tions. In forward travel the converse
applies and the paths of the two
wheels converge. So, .if the front
wheel runs naturally in the line of its
own plane, the trailing frame and rear
wheel will swing into line behind it
along a tractrix, by straightforward
geometry. To an observer on the
bike, however, it will appear that self-
centering is occurring (though it is
the rest of the bike and not the front
wheel that is swinging).

I modified my outrigger tricycle to
hold the main frame as nearly upright
as possible, so that it ran in a straight

. Handlebars pushed out of true

Initial straight track Subsequent track shows no self-centering

SIDEWAYS FORCE on front tire pro-
duces a torque about the steering axis,
so tending to lower the center of gravity
of the bicycle. —FIG. 6

SELF-CENTERING? A bicycle with an "outrigger" third wheel to keep it upright
was pushed and released riderless. At the point shown the handlebars were knocked
out of true, resulting in a change of direction and no self-centering. The slight wave
in the track resulted from oscillations in the framework. —FIG. 7
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line. Then, first soaking the front
wheel in water to leave a track, I
pushed it up to speed, released it, and,
running alongside, thumped the han-
dlebars out of true. Looking at the
bike, it seemed evident that the wheel
swung back to dead ahead. But the
track (figure 7) showed what I hoped
to find—a sharp angle with no trace
of directional recovery. The bicycle
has only geometrical castor stability to
provide its self-centering.

Success at last!

This test completed the ingredients
for a more complete theory of the bi-
cycle. In addition to the rider's skill
and the gyroscopic forces, there are,
acting on the front wheel, the center-
of-gravity lowering torque (figure 6)
and the castoring forces; the heavier
the bicycle's load the more important
these become. I have not yet formal-
ized all these contributions into a I
mathematical theory of the bicycle, so i
perhaps there are surprises still in :|
store; but at least all the principles |
have been experimentally checked.

I made URB IV by moving the
front wheel of my bicycle just four
inches ahead of its normal position,
setting the system well into the un-
stable region. It was indeed very
dodgy to ride, though not as impos-
sible as I had hoped—perhaps my skill
had increased in the course of this
study. URB IV had negligible self-
stability and crashed gratifyingly to
the ground when released at speed.

It seems a lot of tortuous effort to
produce in the end a machine of abso-
lutely no utility whatsoever, but that
sets me firmly in the mainstream of
modern technology. At least I will
have no intention of foisting the prod-
uct onto a long-suffering public in the
name of progress.
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