TFY 4240
Øving 4 2006, Solution

Problem 1

a)

The potential outside is given by:
$V(r, \theta)=\sum \frac{B_{l}}{r^{l+1}} P_{l}(\cos \theta)$
and inside
$V(r, \theta)=\sum A_{l} r^{l} P_{l}(\cos \theta)$
$V_{\text {inside }}=\left.V_{\text {outside }}\right|_{r=R}$ gives $\quad A_{l}=\frac{B_{l}}{R^{2 l+1}}$
At the surface
$V(R, \theta)=\sum \frac{B_{l}}{R^{l+1}} P_{l}(\cos \theta)=V_{0} \cos ^{2} \theta$
with
$B_{l}=\frac{2 l+1}{2} R^{l+1} \int_{0}^{\pi} V(R, \theta) P_{l}(\cos \theta) \sin \theta d \theta$
We can write the potential at the surface of the sphere as
$V(R, \theta)=V_{0} \cos ^{2} \theta=V_{0}\left(\frac{3 \cos ^{2} \theta-1}{3}+\frac{1}{3}\right)=V_{0}\left(\frac{2}{3} P_{2}(\cos \theta)+\frac{1}{3} P_{0}(\cos \theta)\right)$
which gives
$B_{l}=\frac{2 l+1}{2} R^{l+1} V_{0} \int_{0}^{\pi}\left(\frac{2}{3} P_{2}(\cos \theta)+\frac{1}{3} P_{0}(\cos \theta)\right) P_{l}(\cos \theta) \sin \theta d \theta$
giving
$B_{0}=\frac{1}{3} R V_{0}$
$B_{2}=\frac{2}{3} R^{3} V_{0}$
Therefore:
$V_{\text {ouside }}=V_{0}\left(\frac{1}{3} \frac{R}{r} P_{0}(\cos \theta)+\frac{2}{3} \frac{R^{3}}{r^{3}} P_{2}(\cos \theta)\right)$
b) The surface charge is determined by the equation:

$$
\sigma(\theta)=-\varepsilon_{0}\left(\frac{\partial V_{\text {outside }}}{\partial r}-\frac{\partial V_{\text {inside }}}{\partial r}\right)
$$

We had
outside
$V(r, \theta)=\sum \frac{B_{l}}{r^{l+1}} P_{l}(\cos \theta)$
and inside
$V(r, \theta)=\sum A_{l} r^{l} P_{l}(\cos \theta)=\sum \frac{B_{l} r^{l}}{R^{2 l+1}} P_{l}(\cos \theta)$
Inserting this in the expression for σ

$$
\begin{aligned}
\sigma(\theta) & =-\left.\varepsilon_{0}\left(\sum-(l+1) \frac{B_{l}}{r^{l+2}} P_{l}(\cos \theta)-l \frac{B_{l} r^{l-1}}{R^{2 l+1}} P_{l}(\cos \theta)\right)\right|_{r=R} \\
& =\varepsilon_{0} \sum(2 l+1) \frac{B_{l}}{R^{l+2}} P_{l}(\cos \theta)
\end{aligned}
$$

Inserting for B_{l} :

$$
\begin{aligned}
\sigma(\theta) & =\varepsilon_{0}\left(\frac{B_{0} P_{0}(\cos \theta)}{R^{2}}+\frac{B_{2} P_{2}(\cos \theta)}{R^{4}}\right) \\
& =\frac{\varepsilon_{0} V_{0}}{R}\left(\frac{1}{3} P_{0}(\cos \theta)+\frac{10}{3} P_{2}(\cos \theta)\right) \\
& =\frac{\varepsilon_{0} V_{0}}{3 R}\left(15 \cos ^{2} \theta-4\right)
\end{aligned}
$$

c) The quadrupole moment is given by:

$$
\begin{aligned}
p= & \int r^{2} P_{2}(\cos \theta) d q=2 \pi R^{4} \int P_{2}(\cos \theta) \sigma(\theta) \sin \theta d \theta \\
& =2 \pi R^{4} \int_{0}^{\pi} P_{2}(\cos \theta) \frac{\varepsilon_{0} V_{0}}{R}\left(\frac{1}{3} P_{0}(\cos \theta)+\frac{10}{3} P_{2}(\cos \theta)\right) \sin \theta d \theta \\
& =4 \pi \varepsilon_{0} \frac{2}{3} V_{0} R^{3}
\end{aligned}
$$

This is, apart from the $4 \pi \varepsilon_{0}$ term, the same as the coefficient of $P_{2}(\cos \theta)$ in the expression for the potential, which is given by:
$V_{\text {quadru }}(r, \theta)=\frac{1}{4 \pi \varepsilon_{0}} \frac{p_{2}}{r^{3}} P_{2}(\cos \theta)$

Problem 4.14
Total charge on the dielectric is $Q_{\text {tot }}=\oint_{\mathcal{S}} \sigma_{b} d a+\int_{\mathcal{V}} \rho_{b} d \tau=\oint_{\mathcal{S}} \mathbf{P} \cdot d \mathbf{a}-\int_{\mathcal{V}} \nabla \cdot \mathbf{P} d \tau$. But the divergence theorem says $\oint_{\mathcal{S}} \mathbf{P} \cdot d \mathbf{a}=\int_{\mathcal{V}} \boldsymbol{\nabla} \cdot \mathbf{P} d \tau$, so $Q_{\mathrm{enc}}=0$. qed

Problem 4.21

Let Q be the charge on a length ℓ of the inner conductor.

$$
\begin{aligned}
\oint \mathrm{D} \cdot d \mathrm{a} & =D 2 \pi s \ell=Q \Rightarrow D=\frac{Q}{2 \pi s \ell} ; \quad E=\frac{Q}{2 \pi \epsilon_{0} s \ell}(a<s<b), \quad E=\frac{Q}{2 \pi \epsilon s \ell}(b<r<c) \\
V & =-\int_{c}^{a} \mathrm{E} \cdot d \mathrm{l}=\int_{a}^{b}\left(\frac{Q}{2 \pi \epsilon_{0} \ell}\right) \frac{d s}{s}+\int_{b}^{c}\left(\frac{Q}{2 \pi \epsilon \ell}\right) \frac{d s}{s}=\frac{Q}{2 \pi \epsilon_{0} \ell}\left[\ln \left(\frac{b}{a}\right)+\frac{\epsilon_{0}}{\epsilon} \ln \left(\frac{c}{b}\right)\right] \\
\frac{C}{\ell} & =\frac{Q}{V \ell}=\frac{2 \pi \epsilon_{0}}{\ln (b / a)+\left(1 / \epsilon_{r}\right) \ln (c / b)}
\end{aligned}
$$

Problem 4.30
Net force is to the right (see diagram). Note that the field lines must bulge to the right, as shown, because E is perpendicular to the surface of each conductor.

