Problem 1

Problem 9.19 in Griffiths

Problem 2

a) The reflection coefficient of a thin film is given by

$$
r=\frac{r_{01}+r_{12} e^{2 i \delta}}{++r_{01} r_{12} e^{2 i \delta}}
$$

Express r_{01}, r_{12} and δ in terms of the appropriate dielectric constants and the film thickness. The index 0 stands for the incident medium (vacuum), 1 stands for the film and 2 for the substrate.
b) If the film is very thin, the expression above can be expanded in terms of d / λ or you can alternatively expand the sinus and cosinus terms in the transfer matrix. Show that to first order one obtains
$r=r_{02}\left(1+2 i k_{0} d \frac{\varepsilon_{1}-\varepsilon_{2}}{1-\varepsilon_{2}}\right)$
$R=|r|^{2} \quad ; \quad k=\frac{2 \pi}{\lambda}$
Use this expression to estimate the influence of a10 nm oxide film on the reflectivity of aluminium at $\lambda=0.5 \mu \mathrm{~m}$.
$\varepsilon_{\mathrm{Al}}=-36+\mathrm{i} 9.2$
$\mathrm{N}_{\mathrm{Al}}=0.76+\mathrm{i} 6.05$
$\varepsilon_{\text {oxide }}=3.0+\mathrm{i} 0.0$

Problem 3

Calculate the transfer matrix for the structure shown in the figure below at the design wavelength λ_{0}. Each layer is a $\lambda / 4$ layer.

Show that the anti reflection condition is given by
$n_{1}^{4}=n_{0} n_{T} n_{2}^{2}$
No materials are available to satisfy this condition exactly. Find the reflection coefficient if the available materials are $\mathrm{Al}_{2} \mathrm{O}_{3}$ with refractive index 1.69 and MgF_{2} with refractive index 1.38. The substrate is quattz with refractive index 1.445. $\mathrm{n}_{0}=1.0$. What should the refractive index of the high index material have been in order to give zero reflectivity?

