TFY 4240 Løsning Øving 9

Problem 1

Problem 9.19
(a) Use the binomial expansion for the square root in Eq. 9.126:

$$
\kappa \cong \omega \sqrt{\frac{\epsilon \mu}{2}}\left[1+\frac{1}{2}\left(\frac{\sigma}{\epsilon \omega}\right)^{2}-1\right]^{1 / 2}=\omega \sqrt{\frac{\epsilon \mu}{2}} \frac{1}{\sqrt{2}} \frac{\sigma}{\epsilon \omega}=\frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}}
$$

So (Eq. 9.128) $d=\frac{1}{\kappa} \cong \frac{2}{\sigma} \sqrt{\frac{\epsilon}{\mu}}$. qed

$$
\text { For pure water, }\left\{\begin{array}{l}
\epsilon=\epsilon_{r} \epsilon_{0}=80.1 \epsilon_{0} \quad(\text { Table } 4.2), \\
\mu=\mu_{0}\left(1+\chi_{m}\right)=\mu_{0}\left(1-9.0 \times 10^{-6}\right) \cong \mu_{0} \quad \text { (Table 6.1), } \\
\sigma=1 /\left(2.5 \times 10^{5}\right) \quad(\text { Table } 7.1) .
\end{array}\right.
$$

So $d=(2)\left(2.5 \times 10^{5}\right) \sqrt{\frac{(80.1)\left(8.85 \times 10^{-12}\right)}{4 \pi \times 10^{-7}}}=1.19 \times 10^{4} \mathrm{~m}$.
(b) In this case $(\sigma / \epsilon \omega)^{2}$ dominates, so (Eq. 9.126) $k \cong \kappa$, and hence (Eqs. 9.128 and 9.129) $\lambda=\frac{2 \pi}{k} \cong \frac{2 \pi}{\kappa}=2 \pi d$, or $d=\frac{\lambda}{2 \pi}$. qed

$$
\text { Meanwhile } \kappa \cong \omega \sqrt{\frac{\epsilon \mu}{2}} \sqrt{\frac{\sigma}{\epsilon \omega}}=\sqrt{\frac{\omega \mu \sigma}{2}}=\sqrt{\frac{\left(10^{15}\right)\left(4 \pi \times 10^{-7}\right)\left(10^{7}\right)}{2}}=8 \times 10^{7} ; \quad d=\frac{1}{\kappa}=\frac{1}{8 \times 10^{7}}=
$$ $1.3 \times 10^{-8}=13 \mathrm{~nm}$. So the fields do not penetrate far into a metal-which is what accounts for their opacity.

(c) Since $k \cong \kappa$, as we found in (b), Eq. 9.134 says $\phi=\tan ^{-1}(1)=45^{\circ}$. qed

Meanwhile, Eq. 9.137 says $\frac{B_{0}}{E_{0}} \cong \sqrt{\epsilon \mu \frac{\sigma}{\epsilon \omega}}=\sqrt{\frac{\sigma \mu}{\omega}}$. For a typical metal, then, $\frac{B_{0}}{E_{0}}=\sqrt{\frac{\left(10^{7}\right)\left(4 \pi \times 10^{-7}\right)}{10^{15}}}=$ $10^{-7} \mathrm{~s} / \mathrm{m}$. (In vacuum, the ratio is $1 / c=1 /\left(3 \times 10^{8}\right)=3 \times 10^{-9} \mathrm{~s} / \mathrm{m}$, so the magnetic field is comparatively about 100 times larger in a metal.)

Problem 2

a) The transfer matrix is simple to use to see what happens in the limit $\mathrm{d} \rightarrow 0$. Assume that we have several films, each of thickness $\mathrm{d} \ll \lambda$ for each film. We expand the sine and cosine terms in the transfer matrix, giving

$$
\begin{aligned}
& \overline{\bar{M}}_{\mathrm{i}} \approx\left[\begin{array}{cc}
1 & \frac{-\mathrm{i}}{\mathrm{n}_{\mathrm{i}}} \mathrm{k}_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}} \\
-\mathrm{in}_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}} & 1
\end{array}\right] \\
& \text { og } \quad \overline{\mathrm{M}}=\overline{\mathrm{M}}_{1} \overline{\mathrm{M}}_{2} \cdots \approx\left[\begin{array}{cc}
1 & \sum_{\mathrm{i}}^{\mathrm{N}} \frac{-\mathrm{i}}{\mathrm{n}_{\mathrm{i}}} \mathrm{k}_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}} \\
\mathrm{~N} \\
-\sum_{\mathrm{i}} \mathrm{in}_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}} & 1
\end{array}\right]
\end{aligned}
$$

to first order in $\mathrm{k}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}$.

Now $\mathrm{k}_{\mathrm{i}}=\mathrm{n}_{\mathrm{i}} \mathrm{k}_{\mathrm{O}}$, thus

$$
\overline{\overline{\mathrm{M}}} \approx\left[\begin{array}{cc}
1 & -\mathrm{ik} \mathrm{k}_{0} \sum_{\mathrm{i}}^{\mathrm{N}} \mathrm{~d}_{\mathrm{i}} \\
-\mathrm{ik} \mathrm{k}_{\mathrm{o}} \sum_{\mathrm{i}}^{\mathrm{N}} \varepsilon_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}} & 1
\end{array}\right] \quad \varepsilon_{\mathrm{i}}=\mathrm{n}_{\mathrm{i}}^{2}
$$

Inserted in the formula for the reflection coefficient

$$
\begin{aligned}
& \mathrm{A}=\mathrm{D}=1, \quad \mathrm{~B}=-\mathrm{ik}_{\mathrm{o}} \sum \mathrm{~d}_{\mathrm{i}}, \quad \mathrm{C}=-\mathrm{ik}_{\mathrm{o}} \sum \varepsilon_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}} \\
& \mathrm{r}=\frac{1+\mathrm{Bn}_{\mathrm{T}}-\mathrm{C}-\mathrm{n}_{\mathrm{T}}}{1+\mathrm{Bn}_{\mathrm{T}}+\mathrm{C}+\mathrm{n}_{\mathrm{T}}}
\end{aligned}
$$

B and C are small and we can expand further: $\left(\varepsilon_{\mathrm{T}}=\mathrm{n}^{2}\right)$

$$
\begin{aligned}
& \mathrm{r}=\frac{1-\mathrm{n}_{\mathrm{T}}}{1+\mathrm{n}_{\mathrm{T}}}\left[1+2 \mathrm{ik}_{0} \sum_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}} \frac{\varepsilon_{\mathrm{i}}-\varepsilon_{\mathrm{T}}}{1-\varepsilon_{\mathrm{T}}}\right] \\
& \mathrm{r}=\mathrm{r}_{0}\left[1+2 \mathrm{ik}_{0} \sum_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}} \frac{\varepsilon_{\mathrm{i}}-\varepsilon_{\mathrm{T}}}{1-\varepsilon_{\mathrm{T}}}\right]
\end{aligned}
$$

You get the same result if you start with the equation
$r=\frac{r_{01}+r_{12} e^{2 i \delta_{1}}}{1+r_{12} r_{01} e^{2 i \delta_{1}}}$
and expand the exponentials.

$$
\begin{aligned}
r & =r_{0}\left[1+d \frac{\varepsilon_{i}-\varepsilon_{T}}{1-\varepsilon_{T}}\right]=r_{0}\left[1+2 i \frac{2 \pi}{500 \cdot 10^{-9}} 10 \cdot 10^{-9} \frac{3-37-i 9.2}{1-37-i 9.2}\right] \\
& \approx r_{0}[0.99+i 0.22] \\
R & =|r|^{2}=R_{0} \cdot 1.028
\end{aligned}
$$

Thus, the film leads to a 2.8% increase in reflectivity.

Problem 3

The total transfer matrix will be

$$
\overline{\bar{M}}=\left[\begin{array}{cc}
0 & \frac{-i}{n_{1}} \\
-i n_{1} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & \frac{-i}{n_{2}} \\
-i n_{2} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & \frac{-i}{n_{1}} \\
-i n_{1} & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & \frac{-i n_{2}}{n_{1}^{2}} \\
-i \frac{n_{1}^{2}}{n_{2}} & 0
\end{array}\right]
$$

and the reflectivity
$r=\frac{n_{T} n_{0} \frac{n_{2}}{n_{1}^{2}}-\frac{n_{1}^{2}}{n_{2}}}{n_{T} n_{0} \frac{n_{2}}{n_{1}^{2}}+\frac{n_{1}^{2}}{n_{2}}}$
which is zero for

$$
n_{T} n_{0} n_{2}^{2}=n_{1}^{4}
$$

For the given numbers we obtain a reflectivity R
$\mathrm{R}=0.004$

