TFY 4240  Lesning Jving 10

Problem 1

Problem 9.37 : ;
(a) Equation 9.91 = Ep(r,t) = Epe!™ 7 %Y. kp.r = ky(sinfr % + cosér Z) (X +yy+23) =

kr(zsinOr + zcosfr) = zkrsinbp + izkry/sin’ 0r — 1 = kz + tkz, where

k = kpsinfr = (%> ﬁsint91 =“m sinfy,
C N C
) wn - w [
k = kpy/sin®fr—-1= —c—2 (n1/ns)2sin® 9y — 1 = = n? sin® 6y — ni. So
Er(r,t) = Egpe %% ei*=9)  qed
E()R ‘ a - ﬁ 2 . ) . . . . .
(by R = 5 =275 Here {3 is real (Eq. 9.106) and « is purely imaginary (Eq. 9.108); write o = ia,
1 £01
- o fia=B8\ [(—ia=8\ _a®+p°
with aAreal.R-<Z,a+B> (—ia+ﬁ>_az+/32~ ‘
1-ap 1-af|®? |[1-iaB|® (1 -iaB)(1 +iaf)
F b. 9.1 = |—2E = = = T
() From Prob. 9.16, Eo, 1+ag| o™ R 1+ af }1 +iaf3 (1+14aB)(1 —1iapB)

(d) From the solution to Prob. 9.16, the transmitted wave is
= B i wt) o A L = k- o .
E(r,t) = Egpe'™r ™Yy B(r,t) = U—EoTe‘“‘T £ (~ cosf7 X + sin Oy 2).
2

. . , . ck . CK -
Using the results in (a): kr - r = kz + ikz ~ wt, sinfr = —, cosr = i—:
wne Wiy

- ~ (hz—wt) A R 1 - (kg . CcK ck .
E(r,t) = EoTe"‘zel("m wt) g, B(r,t) = —Eyper*eilkz—wt) (—z«—-—-—n X+ — z) .
Vg wny wng

We may as well choose the phase constant so that EoT is real. Then

E(r,t)

Ege™* cos(kz — wt) ¥;
B(r,t) = %Eoe‘“: ;%;Re {lcos(kz — wt) + isin(kz — wt)] [~ikX + k 2]}

= —th;Eoe"'iz [sin(kr — wt) X + kcos(kz — wit) Z]. qed

(I used v2 = ¢/n2 to simplfy B.)

() () V-E = é% [Eoe™"* coé(km —wt)] =0. v
.. _ 0By B 0 [Ey _,. 3
(i) V.B = 52 {w e “rsin(kz wt)} + £ {w e " kcos(kz — wt)
= % [e™"* Kk cos(kz — wt) — ke™**k cos(kz — wt)] = 0. v
~ £y 3 E
(i) VXE = | 8/6c 0/0y 0/0z |=-Lvg 08,
z Oz
0o E, 0
= kEpe™"* cos(kz — wt) X — Ege **ksin(kz — wt) 2.
OB Ey _ s . -
5 = o " [—kwcos(kz — wt) X + kwsin(kz — wt) ]
w
= kEpe " cos(kx — wt) %X — kEge **sin(kz —wt)z2 = V xE. v
ble ¥ z
(V) VxB = | 0/oc 8oy 88z |= (%fzi - BGBZ) 5
B, 0 B z T

E
= [—%/\:26"” sin(kz — wt) + er“"zk? sin(kz — wt)} y = (k* - nz)%e““z sin(kz — wt) 7.

[




eapawEge™ "% sin(kz — wt) §.

uzegg—? = poeaBpe ™ wsin(kzr ~wt) =V x B V.
£ 2 X v Z
(0 S = —1—-(E xB) = —1—&8_2'” 0 cos(kz — wt) 0
H2 He w xsin(kz — wt) 0 kcos(kz — wt)
2
= uﬁo—e“%z [k cos®(kz — wt) X — xsin(kz — wt) cos(kz — wt) 2] .
2W
: : 2 . Egk ~2Kz2 &
Averaging over a complete cycle, using (cos®) = 1/2 and (sin cos) = 0, (S) = me X. On average,
2

then, no energy is transmitted in the z direction, only in the z direction (parallel to the interface). qed

Problem 9.38 )
Look for solutions of the form E = Eq(z,y,2)e” ™!, B = By(z,y, z)e”*, subject to the boundary condi-
tions Ell = 0, B* =0 at all surfaces. Maxwell’s equations, in the form of Eq. 9.177, give
{ﬁ V- E=0 =V -E=0 VxE=-2 = VxE;=iuBqy;
\V'B'—"—O =V -By=0; VXB=%;%%- iVXBQI—%Eo.
From now on I'll leave off the subscript (0). The problem is to solve the (time independent) equations
V- -E=0 VxE=iwB;
V- -B =0 VxB:—%“T’E.
From ¥V x E = iwB it follows that I can get B once I know E, so I'll concentrate on the latter for the moment.
Vx(VXE) =V(V-E)=V’E=-V*E =V x (iwB) = iw (—-%E) = %}E So

2 2 2
V2E, =~ (%) Ey; V'E, = -(%) E,; V2E, = - (%) E.. Solve each of these by separation of variables:

X 2y d?Z w2 1d*X 14 1d°Z
Bz, y,z) =0 = — 47—+ XY = - [ 2]} JOF o
(z,y,2) =X(2)Y(y)Z(z) =YZ = A+ a7 + dez (c> XY Z, or T +Y e +Z T
d*X Y d*z
2 — 52 — 32 th
— (w/c)”. Each term must be a constant, so e -k X, —d—i/—z— = —k;Y, proa —k7Z, with

k3 + k2 + k2 = - (w/c)®. The solution is
Eq(z,y,2) = [Asin(k.z) + B cos(k.2)][C sin(kyy) + D cos(kyy)][E sin(k,2) + F cos(k.z)].

But El = 0 at the boundaries = E; =0aty=0andz=0,s0 D=F =0,and E, =0at y = band z = d, so
ky =nw/b and k, = Iw/d, where n and [ are integers. A similar argument applies to B, and E,. Conclusion:

Ey(z,y,z) = [Asin(kzx) + Bcos(kgz)]sin(kyy)sin(k,z),

Ey(z,y,2) sin(k;z)[C sin(kyy) + D cos(kyy)] sin(k.z),
E.(z,y,2z) = sin(kez)sin(kyy)[Esin(k,z) + F cos(k,z)],

il

where k; = mm/a. (Actually, there is no reason at this stage to assume that kg, ky, and k. are the same for
all three components, and I should really affix a second subscript (z for Ey, y for Ey, and z for E,), but in a
moment we shall see that in fact they do have to be the same, so to avoid cumbersome notation I'll assume
they are from the start.) ,

Now V-E = 0 = k,[A cos(kyz)~Bsin(kyz)]sin(kyy) sin(k. z)+k,y sin(k;z)[C cos(kyy)— D sin(kyy)] sin(k, z)+
k. sin(kyz) sin(kyy)[E cos(k.z) — Fsin(k.z)] = 0. In particular, putting in z = 0, by Asin(kyy) sin(k.z) = 0,
and hence A = 0. Likewisey = 0= C =0and z = 0 = E = 0. (Moreover, if the k’s were not equal for different




COHIPONELLS, then Dy FOULIET analysis tils equation could not de satisned (Ior all z, y, and z) unless the other
three constants were also zero, and we’d be left with no field at all.) It follows that —(Bk, + Dk, + Fk,) =0
(in order that V - E = 0), and we are left with

E = Bcos(ke)sin(kyy) sin(kz2) X + D sin(k.x) cos(kyy) sin(k.z) § + Fsin(k, z) sin(ky,y) cos(k. z) 2,
with k; = (mn/a), ky = (nm/b), k. = (In/d) (I, m, n all integers), and Bk, + Dk, + Fk, = 0.

The corresponding magnetic field is given by B = —(i/w)V x E:

B, = _é (552 _ %%1) = _5 [F'ky sin(kez) cos(kyy) cos(k, z) — Dk, sin(k,z) cos(kyy) cos(k,z)],
B, = —é (651 - 63%> = ‘"ui) [Bk: cos(kyz) sin(kyy) cos(k.z) — Fkg cos(kyx) sin(kyy) cos(k,z)],
B, = —% <%€2 - %E;f) = ~i— [Dk, cos(kz) cos(kyy) sin(k.z) — Bky cos(k, ) cos(’l’cyﬁy) sin(k.z)].
- Om
B = ——E(Fky — Dk.) Sil’l(kr‘m) cos(kyy) cos(k,z) X — :i-(Bkz — Fkg) cos(kzz) sin(kyy) cos(k,z) ¥
- g(Dk:c - Bky)cos(kzx)cos(kyy)‘sin(kzz) Z.

These automatically satisfy the boundary condition B+ =0 (B, =0 at £ =0 and = = a, B, =0aty=0and
y=b,and B, =0 at z=0and z =d).
As a check, let's see if V-B =0

v-B

f

-——:’;(Fky — Dk, )k; cos(k;z) cos(kyy) cos(k,z) — (—:—(Bkz — Fkg)ky cos(ksz) cos(kyy) cos(k, z)

- Z—;(Dkx — Bk, )k cos(k, ) cos(kyy) cos(k, z)

; :
= _5<kak" = Dkgk: + Bk.ky — Fkyky + Dkyk, — Bkyk,) cos(k,z) cos(kyy) cos(k,z) = 0. v

The boxed equations satisfy all of Maxwell’s equations, and they meet the boundary conditions. For TE
modes, we pick E; =0, so F' = 0 (and hence Bk, + Dk, = 0, leaving only the overall amplitude undetermined,
for given I, m, and n); for TM modes we want B, = 0 (so Dk, — Bk, = 0, again leaving only one amplitude
undetermined, since Bk, + Dky + Fk, = 0). In either case (TE;p, or TMimn), the frequency is given by

w?=cA(k2 + ki +k2) = [(mn/a)® + (nm/b)? + (lw/d)z], or | w=cry/(m/a)? + (n/b)2 + (I/d)2.

Problem 9.28 1 .

c

; _ 10 {ye oy = 2—n

Here ¢ = 2.28cm and b = 1.01cm, 50 v10 = S—wio = oo = 0.66 x 107" Hz; vao = 2~
¢

C 10 . - _c. .}_ -1— =
Vg = 35% = 1.97 x 10'°Hz; vo1 = %= 1.49 x 10 Hz; vo2 = 25y = 297X 107 Hz vy = 54/ 5+ 53

1.62 x 1019 Hz. Evidently just four modes occur: |10, 20, 01, and 11.]
To get only one mode you must drive the waveguide at a frequency between vio and vag:

0.66 x 1019 < v < 1.32 x 10%° Hz_] A= 5—, s0 Mo = 2a; Az = a. l2.28 cm < A < 4.56cmj

1.32 x 10'9 Hz;




