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Problem 1

Problem 11.1 o1 :
From Eq. 11.17, A = —N—O;;O—; sinfw(t — r/c)](cos 8 & —sin§ G), so
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Meanwhile, from Eq. 11.12,
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Problem 11.3 )
P =I’R = g}w’sin’*(wt)R (Eq. 11.15) = (P) = 1g3w?R. Equate this to Eq. 11.22:
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For the wires in an ordinary radio, with d = 5x10~2m

L - and (say) A = 10°m, R = 790 —5\2 _ 6
which is negligible compared to the Ohmic resistance. (5x107%) = 2x 1070 Q,




Problem 11.4

By the superposition principle, we can add the potentials of the two dipoles. Let’s first express V/ (Eq. 11.14)

w z
in Cartesian coordinates: V(z,y, 2,t) = “417)roeoc <$2 T 22) sinfw(t—r/c)]. That’s for an oscillating dipole

along the z axis. For one along z or y, we just change z to z or y. In the present case,

P = polcos(wt) & + cos(wt — 7/2) §], so the one along y is delayed by a phase angle /2

sinfw(t = r/c)] = sinfw(t — r/c) - m/2] = —coslw(t — r/c)] (just let wt — wt — 7/2). Thus
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= | -2 2 fosgsinfult - r/c)] — sin 6 cosl(t - 1/} f Similarly,
A = B /) % coslolt = /]3]

We could get the fields by diﬂérentiating these potentials, but I prefer to work with Egs. 11.18 and 11.19,
using superposition. Since % = cos§# — sin6 8, and cosf = z/r, Eq. 11.18 can be written
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f*>, In the case of the rotating dipole, therefore,
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E = - {cos[w(t r/c)] (x " r) + sinfw(t r/c)},(y . r)} ,F
B = l(f x E).
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S=—(ExB)=—[Ex (i xE) = — [E f-(E-f)E|] = —+¢ (notice that E - = 0). Now
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E?= (@5%?—2—) : {a® cos®{w(t — r/c)] + b? si;ié[w(t =r/¢)] + 2(a" b)sinfw(t - r/c)] coslw(t — r/e)l},

wherea =% — (z/r)f and b=y — (y/r)f. Noting that % - r = z and ¥ .r =y, we have
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But z = rsinf cos ¢ and y = rsinfsin¢.
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Intensity profile
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This is twice the power radiated by either oscillating dipole alone (Eq. 11.22). In general, S =
-/;—— [(El -+ Eg) X <81 + BQ)} = ;‘— [(El X Bl) -+ (Eg X Bg) -+ (E1 X Bg) -+ (EQ X B})] = S; + So+ cross terms.
0
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In this particular case, the fields of 1 and 2 are 90° out of phase, so the cross terms go to zero in the time

averaging, and the total power radiated is just the sum of the two individual powers.

Probiem 11.8 -
p(t) = po[cos(wt) X + sin(wt) J] = B(¢) = —w?po[cos(wt) & + sin(wt) y] =

SN2 A2 2 .2 pw! sin” 4
NEN 2 _ uopgw®sin“f .
[B(2)]" = wppleos®(wt) + sin®(wt)] = pfw?. So Eq. 11.59 says |S = T&r%c—T £, | (This appears to disagree

with the' answer to Prob. 11.4. The reason is that in Eq. 11.59 the polar axis is along the direction of p(to);
as the dipole rotates, so do the axes. Thus the angle 6 here is not the same as in Prob. 11.4) Meanwhile’
p - v’ ' |
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and the orientation of the polar axis irrelevant.)

Eq. 11.60 says

.| (This does agree with Prob. 11.4, because we have now integrated over all angles |




