Problem 1

Start with Larmours formula
$P=\frac{\mu_{0} q^{2} a^{2}}{6 \pi c}=\frac{\mu_{0} q^{2}}{6 \pi c m^{2}}\left(\frac{d \bar{p}}{d t}\right)^{2}$
and its realistic generalisation
$P=\frac{\mu_{0} q^{2}}{6 \pi c m^{2}}\left(\frac{d p_{\mu}}{d \tau} \frac{d p^{\mu}}{d \tau}\right)$
where the relativistic four vector has the components
$\left(p^{0}, p^{1}, p^{2}, p^{3}\right)=\left(E / c, p_{x .} p_{y}, p_{z}\right)$
and with $d \tau=d t / \gamma$ and $\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}$
$E=\gamma m c^{2}$ and $\bar{p}=\gamma m \bar{v}$
Show that the relativistic generalisation leads to the socalled Lienard result $P=\frac{\mu_{0} q^{2} c}{6 \pi} \gamma^{6}\left(\dot{\beta}^{2}-(\bar{\beta} \times \dot{\bar{\beta}})^{2}\right)$

Problem 2

Problem 12.52 in Griffiths

Problem 3

Problem 12.53 in Griffiths

Problem 4

Problem 12.54 in Griffiths

