UNIVERSITETET I TRONDHEIM NORGES TEKNISKE HØGSKOLE INSTITUTT FOR TEORETISK FYSIKK

Faglig kontakt under eksamen: F.aman.Finn Bakke Tlf. 3649

Kontinuasjonseksamen i fag 71516 ELEKTROMAGNETISK TEORI

Lørdag 21.august 1982 kl.0900-1500

Tillatte hjelpemidler: Otto Øgrim: Størrelser og enheter i fysikken K.Rottmann: Mathematische Formelsammlung Regnestav/lommekalkulator.

Problem 1

In this problem we consider electromagnetic radiation in a medium with a dielectric constant ϵ , a magnetic permeability μ and a zero conductivity, σ =0 . Both ϵ and μ are constant and real. The radiation field has the following form

$$\vec{E}(\vec{r},t) = \vec{E}_0 \exp(i\vec{k} \cdot \vec{r} - i\omega t)$$

$$\vec{H}(\vec{r},t) = \vec{H}_0 \exp(i\vec{k} \cdot \vec{r} - i\omega t)$$

- a) Derive: $\vec{k} \cdot \vec{E}_0 = \vec{k} \cdot \vec{H}_0 = 0$
- b) Derive: $\vec{H}_0 = \frac{c}{100} \vec{k} \vec{\Lambda} \vec{E}_0$
- c) Derive the dispersion relation $k(\omega) = \frac{\omega}{c} \sqrt{\epsilon \mu}$

Note that $k(\omega)$ is real.

d) What is the most important difference if the conductivity is finite and how does this effect the intensity of the beam as a function of position (no derivation needed, only give a short comment).

We now consider the reflection and transmission of light at a flat interface between two non conductive media with dielectric constants ϵ_1 and ϵ_2 and magnetic permeabilities μ_1 and μ_2 .

The interface is chosen along the x-y plane. For z<0 the field is the sum of the incident and the reflected radiation field. For z>0 it is equal to the transmitted field. For the electric field one therefore has

$$\vec{E}(\vec{r},t) = \begin{cases} \vec{E}_{i} \exp(i\vec{k}_{i} \cdot \vec{r} - i\omega t) + \vec{E}_{r} \exp(i\vec{k}_{r} \cdot \vec{r} - i\omega t) & \text{for } z < 0 \\ \vec{E}_{t} \exp(i\vec{k}_{t} \cdot \vec{r} - i\omega t) & \text{for } z > 0 \end{cases}$$

and similarly for the magnetic field. The properties derived in a, b and c are now true for the incident, the reflected and the transmitted fields respectively.

- e) Give these properties explicitly.
- f) What are the boundary conditions at z=0 (No derivation).
- Show that $\theta_r = \theta_i$ and $n_1 \sin \theta_i = n_2 \sin \theta_t$ where the refractive indices are defined as $n_1 = \sqrt{\epsilon_1 \mu_1}$ and $n_2 = \sqrt{\epsilon_2 \mu_2}$.

 (The angles of incidence, reflection and transmission are related to the wave vectors by:

$$\vec{k}_{i} = |\vec{k}_{i}|(0, \sin\theta_{i}, \cos\theta_{i})$$
 $\vec{k}_{r} = |\vec{k}_{r}|(0, \sin\theta_{r}, -\cos\theta_{r})$
 $\vec{k}_{t} = |\vec{k}_{t}|(0, \sin\theta_{t}, \cos\theta_{t}))$.

Bonus question

h) Derive expressions for \vec{E}_t and \vec{E}_r if \vec{E}_i =(E_i,0,0).

Problem 2

A plan parallel condensator has a velocity v with respect to the observer. The surface area of the plates is S . The distance between the plates is d . The electric field E is homogeneous and orthogonal on the plates (effects at the edge are

neglected) inside the condensator and zero outside the condensator.

- a) Give the electromagnetic energy density as well as the total electromagnetic energy in the rest frame of the condensator.
- b) Give the electric and the magnetic fields in the condensator in the frame of the observer (choose the x axis such that \vec{v} =(v,0,0) and take the electric field in the rest frame of the condensator as \vec{E} =E(sin θ , cos θ ,0)).
- c) Give the electromagnetic energy and the momentum density in the frame of the observer.
- d) Calculate the total electromagnetic energy and momentum of the condensator in the frame of the observer.

Problem 3

In many cases one studies the field due to a static charge distribution $\rho(\vec{r}_0)$ which is unequal to zero only in a finite region (with a typical diameter d). at a point in space \vec{r} far removed from that region, d<<r

- a) Give the electrostatic potential.
- b) Expand this potential to second order in (d/r).
- c) Give definitions of the total charge q , the dipole moment \vec{p} and the quadrupole moment \vec{Q} of the charge distribution.
- d) What are the potentials due to a dipole \vec{p} and to a quadrupole \vec{Q} .