UNIVERSITETET I TRONDHEIM NORGES TEKNISKE HØGSKOLE INSTITUTT FOR TEORETISK FYSIKK

Faglig kontakt under eksamen: F.aman. Finn Bakke
Tlf. 3649 el. 3646

EKSAMEN I FAG 71516 ELEKTROMAGNETISK TEORI

Tirsdag 25.mai 1982 kl.0900-1500

Tillatte hjelpemidler: Otto Øgrim: Størrelser og enheter i fysikken
K.Rottmann: Mathematische Formelsammlung
Regnestav/lommekalkulator

Problem 1

We consider the transmission and reflection of normally incident light. The boundary between the two media with dielectric constants ϵ_1 and ϵ_2 (while $\mu_1\!=\!\mu_2\!=\!1$ and $\sigma_1\!=\!\sigma_2\!=\!0$) is along the x-y plane. The refractive indices are defined by $n_1\!=\!\sqrt{\epsilon_1}$ and $n_2\!=\!\sqrt{\epsilon_2}$.

$$\vec{E}_{i}(\vec{r},t) = E_{i}(1,0,0) \exp\left[i\omega\left(\frac{n_{1}z}{c}-t\right)\right]$$

$$\vec{x}_{i}(\vec{r},t) = n_{i}E_{i}(0,1,0) \exp\left[i\omega\left(\frac{n_{i}Z}{C}-t\right)\right]$$

the reflected light has the form

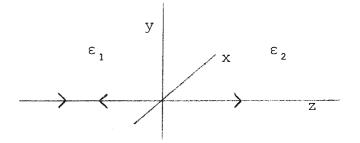
$$\vec{E}_{r}(\vec{r},t) = E_{r}(1,0,0) \exp\left[-i\omega\left(\frac{n_{1}z}{c} + t\right)\right]$$

$$\vec{\mathcal{H}}_{p}(\vec{r},t) = -n_{1} E_{p}(0,1,0) \exp\left[-i\omega\left(\frac{n_{1}z}{c} + t\right)\right]$$

and the transmitted has the form

$$\vec{E}_{t}(\vec{r},t) = E_{t}(1,0,0) \exp\left[i\omega\left(\frac{n_{2}z}{c} - t\right)\right]$$

$$\vec{x}_{t}(\vec{r},t) = n_2 E_{t}(0,1,0) \exp\left[i\omega\left(\frac{n_2 z}{c} - t\right)\right]$$



- a. Show that these fields satisfy Maxwells equations in a medium. (It is sufficient to do this for only one of the three fields).
- b. Express E_r and E_t in terms of E_i using the boundary conditions.

Problem 2

- a. Give the definition of the four potential A_{μ} in terms of the vector potential $\stackrel{\rightarrow}{A}$ and the normal potential $\,\phi$.
- b. What is the Lorentz gauge and explain why one has the freedom to choose the gauge.
- c. Define the four current J_{μ} in terms of the current \overrightarrow{J} and the charge density ρ .
- d. Derive the (d'Alembert) equations for the four potential using the Lorentz gauge.
- e. Give the definition of the field tensor $F_{\mu\nu}$ (a four by four tensor) and show how it is related to the electric and magnetic field.
- f. Give the Maxwell equations for the field tensor.
- g. Give the four dimensional Lorentz force in terms of $\,F_{\mu\nu}\,$ and $\,J_{\,u}$. What is the physical meaning of the fourth component.
- h. If the four potential A_{μ} is given in the rest frame give the four potential A_{μ}^{\prime} in the frame of an observer moving with a velocity v along the x-axis.

Problem 3

motion).

An electron with charge e and mass m moves in a homogeneous magnetic field \overrightarrow{B} =(0,0,B). The motion is orthogonal to the magnetic field in the x-y plane.

a. Show that the electron moves along a circle with a constant absolute velocity $V=|\vec{V}(t)|$. What is the rotation frequency. Give explicit expressions for the position $\vec{R}(t)$ and the velocity $\vec{V}(t)$ of the electron choosing the origin of the coordinate frame in the center of the circle. (Use Newton's equation and not the relativistic equations of

As the electron moves around a circle it will itself cause an electromagnetic field. The Liénard-Wiechert potentials due to the moving electron are given by

$$\phi(\vec{r},t) = \frac{e}{|\vec{r} - \vec{R}_r(t)| - \frac{1}{c} \vec{V}_r(t) \cdot (\vec{r} - \vec{R}_r(t))}$$

$$\vec{A}(\vec{r},t) = \frac{\frac{e}{c} \vec{V}_r(t)}{|\vec{r} - \vec{R}_r(t)| - \frac{1}{c} \vec{V}_r(t) \cdot (\vec{r} - \vec{R}_r(t))}$$

where the retarded position and velocity are given by

$$\vec{R}_{r}(t) = \vec{R} \left(t - \frac{|\vec{r} - \vec{R}_{r}(t)|}{c} \right) \quad \text{and} \quad \vec{V}_{r}(t) = \vec{V} \left(t - \frac{|\vec{r} - \vec{R}_{r}(t)|}{c} \right)$$

We shall now study the fields far away from the charge. Thus we assume $r \equiv |\overrightarrow{r}|$ to be large compared to the radius of the circle along which the electron moves.

- b. Which approximation may be used in this case for $\overrightarrow{R}_r(t)$ and $\overrightarrow{V}_r(t)$.
- c. Expand ϕ and \vec{A} to linear order in the radius of the circle.
- d. Calculate the resulting electric and magnetic field.
- e. Give the contribution proportional to 1/r for long distances and argue that this is a radiation field.
- f. Calculate the energy current emitted by the electron in the direction \vec{r}/r .
- g. Calculate the average total energy loss of the electron due to radiation.
- h. How does this effect the motion of the electron (no calculation, only give a qualitative description of the trajectory).