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FY3403 PARTICLE PHYSICS
Friday December 2, 2011

This solution consists of 7 pages.

Problem 1. Quark model for baryons
Give a qualitative description of how one in the quark model assumes that baryons are made of quarks. In

particular try to explain

a) how many quarks and antiquarks the baryons are made of,

In the crudest approximation a baryon is composed of three quarks and a anti-baryon
is composed of three antiquarks. The quantum numbers for the (anti-)baryon is deter-
mined from this valence quark model.

Note: In a more accurate description we must take into account that the baryon contains a fluctuating

number of quark-antiquark pairs (called sea quarks), and also a fluctuating number of gluons.

b) which spin S the total baryon system may have,

Since the quarks each have spin S = 1

2
it follows that the total spin of the baryon is

S = 1

2
or S = 3

2
.

Note: In addition the quarks in a baryon may have an angular momentum L. We then can find baryons

with spin J = |L− S|, . . . , L+ S. When L varies this states form Regge trajectories.

c) which isospin I the total baryon system may have,

If the baryon only consists of u or d quarks the isospin will be I = 1

2
or I = 3

2
.

If the baryon consists of two u/d quarks (and one c/s/t/b quark), the isospin will be
I = 0 or I = 1. If the baryon consists of one u/d quark (and two c/s/t/b quarks), the
isospin will be I = 1

2
. If the baryon have no u/d quarks the isospin will be I = 0.

d) why there are no baryons with charge −2 (in units of the positron charge),

The quarks have electric charge Q = −1

3
or Q = +2

3
. Thus from three quarks we can

only make Q = −1, 0 1, 2.

Note: It has been speculated that a pentaquark, with four valence quarks and a valence antiquark,

might exist. A pentaquark baryon might have electric charge Q = −2.
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Problem 2.
The normalized spin/flavor wave function for ∆++ with spin Sz = 3

2
is given by

|∆++ 3

2
〉 = |u ↑〉|u ↑〉|u ↑〉. (1)

a) Find the normalized spin/flavor wave function for ∆+ with spin Sz = 3

2
.

We use the ladder operators for isospin I− = I−
1
+I−

2
+I−

3
on equation (1) and normalize

by hand. This gives

|∆+ 3

2
〉 =

√

1

3
(|d ↑〉 |u ↑〉 |u ↑〉+ |u ↑〉 |d ↑〉 |u ↑〉+ |u ↑〉 |u ↑〉 |d ↑〉) . (2)

b) Find the normalized spin/flavor wave function for ∆+ with spin Sz = 1

2
.

We use the ladder operators for spin S− = S−

1
+S−

2
+S−

3
on equation (2) and normalize

by hand. This gives

|∆+ 1

2
〉 =

1

3
(|d ↓〉 |u ↑〉 |u ↑〉+ |d ↑〉 |u ↓〉 |u ↑〉+ |d ↑〉 |u ↑〉 |u ↓〉)

+
1

3
(|u ↓〉 |d ↑〉 |u ↑〉+ |u ↑〉 |d ↓〉 |u ↑〉+ |u ↑〉 |d ↑〉 |u ↓〉) (3)

+
1

3
(|u ↓〉 |u ↑〉 |d ↑〉+ |u ↑〉 |u ↓〉 |d ↑〉+ |u ↑〉 |u ↑〉 |d ↓〉) .

c) The magnetic moment of a baryon with spin/flavor wave function |Ψ〉 is defined as

µz = 〈Ψ |
∑

i

eQi

2mi

Siz |Ψ〉, (4)

where the sum is over the three positions in the wave function. (Note that Qi, mi and Siz is operators

which take different values depending on the states they act on.)

Find the magnetic moment of ∆++ with spin Sz = 3

2
. Assume that mu = md.

Here we use natural units, i.e. units where ~=c=1 (Eq. 4 only valid in natural units).

µz =

(

2

3
× 1

2
+

2

3
× 1

2
+

2

3
× 1

2

)(

e

2mu

)

=
e

2mu
(5)

d) Find the magnetic moment of ∆+ with spin Sz = 1

2
. Assume that mu = md.

µz = 1

9

[(

−1

3
×−1

2
+ 2

3
× 1

2
+ 2

3
× 1

2

)

× 3 +
(

−1

3
× 1

2
+ 2

3
×−1

2
+ 2

3
× 1

2

)

× 6
]

(

e
2mu

)

=
e

12mu
(6)

Hint to point a–b): Use the ladder operators.
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Problem 3. Interaction processes and Feynman diagrams
Draw lowest order Feynman diagrams for the following interaction processes (if the process is possible)

a) e− + µ− −→ e− + µ−

e−

µ−

e−

µ−

γ
e−

µ−

e−

µ−
Z0

b) e− + µ+ −→ e− + µ+

e−

µ+

e−

µ+

γ
e−

µ+

e−

µ+
Z0

c) e− + µ+ −→ e+ + µ−

It is essentially correct to say that this process is impossible, due to conservation of
electron and muon numbers. However, with the possibility of neutrino oscillations there
should be an exceedingly tiny amplitude for the process to occur through radiative
corrections

e−

µ+

µ−

e+

ν

ν̄
Z0

W

W

An educated guess is that this amplitude is of order
(

∆m2
21/M

2
W

)2
relative to the

amplitude for the amplitude for ν + ν̄ → ν + ν̄ scattering, and thus that the cross
section is of order

(

∆m2
21/M

2
W

)4 ≈ 10−52 relative to the νν̄ scattering cross section
(which is already very small). Not much chance of observing this process during the
lifetime of our universe!

d) e− + e+ −→ µ+ + µ−

e−

e+

µ−

µ+

γ
e−

e+

µ−

µ+

Z0

e) e− + e+ −→ e+ + e−

e−

e+

e−

e+
γ, Z0

e−

e+

e−

e+

γ, Z0
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The notation indicates that there are actually four diagrams, two with γ exchange and
two with Z0 exchange.

f) e− + νµ −→ e− + νµ

e−

νµ

e−

νµ
Z0

g) e− + νµ −→ νe + µ−

e−

νµ

νe

µ−
W

h) τ− −→ µ− + x (replace x by some possible set of particles)

τ−

µ−

ντ

ν̄µ

W

i) νe + νµ −→ νµ + νe

νe

νµ

νe

νµ
Z0

j) n −→ p+ x (replace x by some possible set of particles)

(n ≈ dud) (p ≈ duu)
d

e−
u

ν̄e

W

Problem 4. Elastic νe + e
−

→ νe + e
− scattering

Assume Feynman rules as indicated below, where m is the mass of the heaviest fermion involved in the

interaction vertex and q is the four-momentum of the virtual messenger particle.

�
q

ie
√

m2 − q2 �i

q2−M2
W

W± q �i

q2−M2
Z

Z q
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a) Draw all lowest order Feynman diagrams for the process.

pe

pν

p
′

e

p
′

ν

a)
e−

νe

e−

νe
Z0

pe

pν

p
′

e

p
′

ν

b)
e−

νe

e−

νe
W

Here we have added the 4-momentum to the fermion lines.

b) Write down the corresponding algebraic expressions for the scattering amplitude Mfi.

We do the calculations i the center of mass system (CM) since equation (20) is derived
(and only valid) in CM. We set the neutrino mass to zero (νe is not a mass eigenstate
anyhow). Since this is elastic scattering we have that Ee =E

′

e, and Eν =E
′

ν = |pe|=
|pν |= |p′

e|= |p′

ν |.

Ma
fi = e2

√

−q2Z

√

m2
e − q2Z

q2Z −M2
Z

(7)

Mb
fi = e2

m2
e − q2W

q2W −M2
W

(8)

where

q2Z = (pe − p
′

e)
2 = −4E2

ν sin
2(θ/2) (9)

q2W = (pe − p
′

ν)
2 = m2

e − 2EνEe − 2E2
ν cos θ

= m2
e − 2Eν(Ee+Eν) + 4E2

ν sin
2(θ/2), (10)

where θ is the scattering angle, pe · p
′

e =pν · p
′

ν =E2
ν cos θ, and pe · p

′

ν = E2
ν cos(π−θ).

Note that both amplitudes are real.

c) Find the total scattering cross-section. You may assume that |q2| ≪ M2
W and |q2| ≪ M2

Z to simplify

expressions.

Here we have that S = 1, |pf | = |pi| and there is no φ-dependence giving

σ =
1

64π2(Ee + Eν)2

∫

2π

0

dφ

∫ π

0

dθ sin θ |Mfi|2 =
1

8πE2

∫

1

0

udu
(

Ma
fi+Mb

fi

)2

(11)

where we have introduced the variable u= sin(θ/2), and E =Ee+Eν =
√
s , the total

energy in CM. Assuming that |q2W | ≪ M2
W and |q2Z | ≪ M2

Z we have

Mfi=Ma
fi+Mb

fi ≈ −2e2Eν

M2
Z

u
√

m2
e + 4E2

νu
2 − 2e2Eν

M2
W

(

E − 2Eνu
2
)

= −8παEEν

M2
W

[

1 +
M2

W

M2
Z

u

√

m2
e

E2
+

4E2
ν

E2
u2 − 2Eν

E
u2

]

(12)

First let us consider the case where Eν ≪ me. In this case the electron is non-relativistic
(E ≈ Ee ≈ me), and we have

Mfi≈−8παmeEν

M2
W

(

1 +
M2

W

M2
Z

u

)

(13)
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and

σ ≈ 8πα2 E2
ν

M4
W

(

1

2
+

2

3

M2
W

M2
Z

+
1

4

M4
W

M4
Z

)

≈ 8πα2 E2
ν

M4
W

1.17 (14)

Next consider the case where me≪Eν≪MW giving E ≈ 2Eν . In this case we have

Mfi≈−8παEEν

M2
W

[

1−
(

1− M2
W

M2
Z

)

u2
]

(15)

and

σ ≈ 8πα2 E2
ν

M4
W

[

1

2
− 2

4

(

1− M2
W

M2
Z

)

+
1

6

(

1− M2
W

M2
Z

)2
]

(16)

= 8πα2 E2
ν

M4
W

(

1

6
+

1

6

M2
W

M2
Z

+
1

6

M4
W

M4
Z

)

≈ 8πα2 E2
ν

M4
W

0.40 (17)

In the more general case (we still have Eν ≪ MW ) we have

σ ≈ 8πα2 E2
ν

M4
W

∫

1

0

udu

(

1 +
M2

W

M2
Z

u

√

m2
e

E2
+

4E2
ν

E2
u2 − 2Eν

E
u2

)2

= 8πα2 E2
ν

M4
W

[

1

2
− Eν

E
+

2E2
ν

3E2
+

M2
Z

M2
W

f(Eν) +
M4

Z

M4
W

(

m2
e

E2
+

4E2
ν

6E2

)]

(18)

where

f(Eν) =
2me

E

∫

1

0

duu2
(

1− 2Eν

E
u2
)

√

1 +
4E2

ν

m2
e

u2

= − 1

32

m2
e

E2
ν

√

1 +
4E2

ν

m2
e

+
1

16

m2
e

E2
ν

(

1 +
4E2

ν

m2
e

)3/2

+
1

64

m4
e

EE3
ν

(

1 +
4E2

ν

m2
e

)3/2

− 1

12

m2
e

EEν

(

1+
4E2

ν

m2
e

)3/2

− 1

128

m4
e

EE3
ν

√

1+
4E2

ν

m2
e

− 1

256

m5
e

EE4
ν

ln

(

2Eν

me
+

√

1+
4E2

ν

m2
e

)

− 1

64

m3
e

E3
ν

ln

(

2Eν

me
+

√

1+
4E2

ν

m2
e

)

(19)

This seemingly complicated function is depicted in Figure 1.
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Figure 1: Plot of f(Eν

me
). The asymptotic values, 2

3
and 1

6
, are included in the plot, red and

green line respectively. Note that the x-axes is logarithmic spanning [2 · 10−4, 102], so the
function is slowly varying from 2

3
for Eν

me
≈ 10−3 and smaller, to 1

6
for Eν

me
≈ 10 and larger.

Given: We use natural units, i.e. units where ~ = c = 1. The connection between scattering amplitude Mfi

and scattering cross-section is
dσ

dΩ
=

S

64π2

|Mfi|
2

(E1 + E2)2
|pf |

|pi|
. (20)


