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This solution consists of 7 pages.

Problem 1. Model for fermions and bosons
In this problem we shall investigate a much simplified version of the Glashow-Weinberg-Salam (GWS) model
of electroweak interactions. Consider first the Lagrangian density

L = iL†σ̄ν ∂νL + iR†σν ∂νR + (∂νϕ∗) (∂νϕ) + µ2ϕ∗ϕ− λ

4
(ϕ∗ϕ)2, (1)

where µ2 and λ are positive parameters. In equation (1) L and R are two-component spinor fields, σν = (I, σ)

and σ̄ν = (I,−σ) where σ are the Pauli matrices.

a) What is the classical groundstate (minimum energy state) of this model? I.e., what are the values of

the fields L, R and ϕ in this state, and what is the corresponding energy density?

A groundstate is obtained for L = R = 0, and

ϕ∗ϕ =
2µ2

λ
. (2)

The phase of ϕ is arbitrary. The minimum energy density becomes

Hmin = −µ4

λ
. (3)

Remark: A canonical analysis of the model shows that

ΠL = iL†, ΠR = iR†, Πϕ = ϕ̇∗, Πϕ∗ = ϕ̇, (4)

leading to an energy (Hamiltonian) density

H = iL†σ ·∇L− iR†σ ·∇R + ϕ̇∗ϕ̇ + ∇ϕ∗ ·∇ϕ− µ2ϕ∗ϕ +
1

4
λ(ϕ∗ϕ)2. (5)

For entirely classical (i.e. commuting) fields, L and R, this expression has no lower bound. This can be
seen by f.i. taking

L = eikz

„
0
1

«
L0, R = eikz

„
1
0

«
R0,

with k > 0. Then H → −∞ when L0 →∞ and/or R0 →∞. However, as fermion fields the “classical”

limit (~ → 0) of L0 and R0 are Grassmann variables giving no sensible contribution to a classical energy

density. Hence, it is standard procedure to neglect the fermions when searching for classical ground

states.
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b) What are, to lowest order in the parameter λ, the masses of the particles (the quantized fluctuations

around the ground state) in this model?

The masses of the (anti-)particles created by the L and R fields are zero. For the bosonic
field ϕ we choose the phase so that its vacum expectation value is

ϕ0 =

√
2µ2

λ
, (6)

and write
ϕ(x) = ϕ0 +

1√
2

[φ1(x) + iφ2(x)] . (7)

The Lagrangian density involving the φ-fields the becomes, to quadratic order,

Lφ =
1
2
(∂µφ1)(∂µφ1)−

1
2
(2µ2)φ2

1 −
1
2
(∂µφ2)(∂µφ2). (8)

Thus, the mass of the bosons are

m1 =
√

2µ, m2 = 0. (9)

c) This model is invariant under three independent global phase transformations, U(1) × U(1) × U(1)?

Which phase transformations?

One possible choice is

L→ eiα L, R→ eiβ R, ϕ→ eiγ ϕ. (10)

We now add an interaction term to the Lagrangian density,

∆L = −λm

“
ϕ L†R + ϕ∗R†L

”
(11)

d) This model now becomes invariant under two independent global phase transformations, U(1)× U(1).

Show how these two transformations act on the three fields.

We must now assure that the contribution (11) remains invariant. One possible choice
is

L→ eiα L, R→ eiβ R, ϕ→ ei(α−β) ϕ. (12)

e) What is the mass of the fermion (to lowest order in λ and λm) in the modified model?

The Lagrangian density involving only L, R and ϕ0 becomes

Lfermion = iL†σ̄ν ∂νL + iR†σν ∂νR− λmϕ0

(
L†R + R†L

)
, (13)

leading to the equation of motion(
iσ̄ν ∂ν −λmϕ0

−λmϕ0 iσν ∂ν

) (
L
R

)
= 0. (14)

This is the Dirac equation in the Weyl representation, with mass term

mf = λm ϕ0 = λm

√
2µ2

λ
. (15)
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Remark: It may not be common to walk around remembering the form of the Dirac equation in the
Weyl representation. For those who don’t one straightforward approach is to eliminate R from the first
equation in (14),

R =
1

λm ϕ0
(iσ̄ν ∂ν) L.

This inserted into the second (and multiplied by λm ϕ0) gives

(iσν ∂ν) (iσ̄σ ∂σ) L = (λm ϕ0)
2L. (16)

Now
(iσν ∂ν) (iσ̄σ ∂σ) = − (∂0 + σ ·∇) (∂0 − σ ·∇) = −∂2

0 + ∇2 = −�.

Thus, equation (16) satisfied by L is just the Klein-Gordon equation,`
� + m2

f

´
L = 0, with mf = λm ϕ0.

This shows that the fermions have mass mf.

f) The two global phase transformations can be made local by introducing two gaugefields, Bν og Wν , and

the associated covariant derivatives. Find a consistent set of covariant derivatives (D
(L)
ν , D

(R)
ν , D

(ϕ)
ν ),

and write down the new Lagrangian density for the model.

You may assume that the covariant derivatives don’t contain any interaction parameters, but that the
kinetic terms for the gauge fields are

Lgauge = − 1

4g2
WνσW νσ − 1

4g′2 BνσBνσ, (17)

where Bνσ = ∂νBσ − ∂σBν and Wνσ = ∂νWσ − ∂σWν .

One possible solution is

D(L)
ν = ∂ν + iBν , (18)

D(R)
ν = ∂ν + iWν , (19)

D(ϕ)
ν = ∂ν + iBν − iWν . (20)

The transformation rules (12), with α = α(x) and β = β(x), must then be augmented
with

Bν → B′
ν = Bν + ∂να, (21)

Wν →W ′
ν = Wν + ∂νβ. (22)

The Lagrangian for the complete model becomes

L = Lgauge + iL†σ̄ν D(L)
ν L + iR†σν D(R)

ν R + (D(ϕ)νϕ)∗ (D(ϕ)
ν ϕ) (23)

+ µ2ϕ∗ϕ− λ

4
(ϕ∗ϕ)2 − λm

(
ϕ L†R + ϕ∗R†L

)
. (24)

g) A linear combination of the gauge fields Bν and Wν gets quanta with mass MZ in this model. Which

linear combination? Find M2
Z expressed by the parameters µ2, λ, g and g′.

To obtain the standard normalization of the kinetic terms for the gauge fields, we
introduce rescaled fields so that

Wν = gW̄ν , Bν = g′B̄ν . (25)
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The quadratic part of the gauge field Lagrangian then becomes

L2 =− 1
4

(
∂νB̄σ − ∂σB̄ν

) (
∂νB̄σ − ∂σB̄ν

)
− 1

4
(
∂νW̄σ − ∂σW̄ν

) (
∂νW̄ σ − ∂σW̄ ν

)
+ ϕ2

0

(
g′B̄ν − gW̄ν

) (
g′B̄ν − gW̄ ν

)
,

We write g =
√

g2 + g′2 cos θ and g′ =
√

g2 + g′2 sin θ, and introduce new fields

Zν = − sin θ Bν + cos θ Wν , Aν = cos θ Bν + sin θ Wν . (26)

This is an orthogonal transformation, which means that the kinetic terms preserve their
diagonal form. The last term becomes ϕ2

0

(
g2 + g′2

)
Zν Zν , giving

L2 =− 1
4

(∂νAσ − ∂σAν) (∂νAσ − ∂σAν)− 1
4

(∂νZσ − ∂σZν) (∂νZσ − ∂σZν)

+
1
2
M2

Z Zν Zν , (27)

with MZ the mass of the Z-boson,

MZ = ϕ0

√
2 (g2 + g′2) = 2µ

√
g2 + g′2

λ
. (28)

Remark: Note that the detailed expressions above depends on the specific form chosen
for the covariant derivate D

(ϕ)
ν .

Problem 2. Concepts in Quantum Field Theory
Give a short qualitative description of the following concepts

a) Ward identity.

Ward identities are relations (which must be) satisfied by amplitudes in a gauge theory
like QED. Typically, if we have an amplitudeMν··· describing the emission or absorption
of a photon with four-momentum k, then we must have kνMν··· = 0. This is required
for the amplitude to be independent of a change of the polarization vector eν → eν +kν .

b) Dimensional regularization.

Dimensional regularization is a convenient and gauge invariant method to evaluate
Feynman diagram loop integrals which are divergent in d = 4 space-time dimensions.
It is based on the fact that such integrals typically have can be analytically continued
to non-integer (even complex) dimensions. By f.i. writing d = 4 + 2ε the divergences
manifest themselves as poles at ε = 0 (and other integer values).

c) Wick rotation (in Feynman diagram integrations)

A Feynman diagram loop integrand typically involve factors like

1
(k2 − a2 + iε)n ,

where k2 = k2
0−k2, with integration over ddk. The integrand thus have pole singularities

near the k0 integration axis, which however can be rotated to the imaginary axis without
encountering singularites. I.e. we change the k0 integration contour to

k0 = eiαkE
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with kE integrated along the real axis, and increase α from 0 to π
2 . This is a Wick

rotation (there is a correspondig rotation of real time to imaginary time).

d) The Cabibbo-Kobayashi-Maskawa matrix.

In the GSW model of electroweak interactions (with 3 quark generations) the charged
weak interaction connects the upper and lower components of lefthanded quark dou-
blets. However, the fields in each doublet are not the same as those forming mass
eigenstates. This leads to a unitary 3 × 3 mixing matrix parametrizing the relative
transition amplitudes between upper and lower components of the various generations.
This is the Cabibbo-Kobayashi-Maskawa matrix .

e) Neutrino oscillations.

The neutrinos created from the various charged leptons (e, µ, τ) in a charged weak
interaction process are not exact mass eigenstates, but a linear superposition of such.
This means that f.i. an electron neutrino will oscillate other types of neutrinos after
sufficiently long time (or propagation distance).

f) Spontaneous symmetry breakdown.

The ground state of f.i. a quantum field theory with some symmetry may not necessarily
be an eigenstate of that symmetry. This is called spontaneous symmetry breakdown.

g) Goldstone boson.

The consequence of the spontaneous breakdown of a continous symmetry is that there
(usually) will exist gapless excitations, corresponding to massless scalar particles in
relativistic theories. These are the Goldstone bosons.

h) Landau, Feynman, and Yennie gauge.

Calculating the Feynman propagator for a gauge field Aν with the gauge fixing condition
∂νA

ν(x) = ω(x), and averaging over ω(x) with a certain class of weights, leads to a one-
parameter class of propagators

Dµν
F (k) =

−i
k2 + iε

(
ηµν − (1− ξ)

kµkν

k2

)
(29)

Here ξ = 0 is called Landau gauge, ξ = 1 is called Feynman gauge, and ξ = 3 is called
Yennie gauge.

Problem 3. Grassmann integration

Let A =

„
a b
c d

«
be a general complex 2× 2 matrix, θ1, θ2, θ∗1 , θ∗2 independent Grassmann variables, and

S1 = (θ1, θ2) A

„
θ1

θ2

«
, (30)

S2 = (θ∗1 , θ∗2) A

„
θ1

θ2

«
. (31)

Do the following Grassmann integrals
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a)
I1 =

Z
dθ1dθ2 eS1 . (32)

Using the fact that θi θj = −θj θi we may simplify the action to S1 = (c− b) θ2 θ1. Thus

I1 =
∫

dθ1dθ2 eS1 =
∫

dθ1dθ2 [1 + (c− b) θ2 θ1] = c− b, (33)

after repeated use of the Grassmann integration rule
∫

dθi(z0 +z1 θi) = z1 (when z0 and
z1 are ordinary complex numbers).

b)
I2 =

Z
dθ1dθ2 θ1θ2 eS1 . (34)

Since θ1 θ2 e(c−b) θ2 θ1 = θ1 θ2 = −θ2 θ1 we find

I2 = −
∫

dθ1dθ2 θ2θ1 = −1. (35)

c)
I3 =

Z
dθ∗1 dθ∗2 dθ1 dθ2 eS2 . (36)

We may simplify the action to S2 = a θ∗1 θ1 + b θ∗1 θ2 + c θ∗2 θ1 + d θ∗2 θ2, i.e.

eS2 = ea θ∗1 θ1 eb θ∗1 θ2 ec θ∗2 θ1 ed θ∗2 θ2

Expanding the exponentials give 24 = 16 terms; only those proportional to θ2 θ1 θ∗2 θ∗1
are of interest, since all other terms will integrate to zero. Thus we find

eS2 = ea θ∗1 θ1 eb θ∗1 θ2 ec θ∗2 θ1 ed θ∗2 θ2

= a d θ∗1 θ1 θ∗2 θ2 + b c θ∗1 θ2 θ∗2 θ1 + uinteresting terms
= −(a d− b c) θ2 θ1 θ∗2 θ∗1 + uinteresting terms .

Hence we find

I3 =
∫

dθ∗1 dθ∗2 dθ1 dθ2 eS2

= −(a d− b c)
∫

dθ∗1 dθ∗2 dθ1 dθ2 θ2 θ1 θ∗2 θ∗1

= −(a d− b c) = −det A. (37)

d)

I4 =
∫

dθ∗1 dθ∗2 dθ1 dθ2 θ∗1 θ2 eS2 . (38)
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Here the only interesting term in the expansion of eS2 is the one proportional to θ∗2 θ1.
I.e., we may write

θ∗1 θ2 eS2 = c θ∗1 θ2 θ∗2 θ1 + uninteresting terms = c θ2 θ1 θ∗2 θ∗1 + uninteresting terms,

to find
I4 =

∫
dθ∗1 dθ∗2 dθ1 dθ2 θ∗1 θ2 eS2 = c. (39)


