Eksamination in FY8104/FY3105 Symmetry in physics Monday December 9, 2013 Solutions

1a) The centre $Z(G)$ consists of the even powers of a, they commute with p and hence with all group elements, therefore they are alone in their conjugation classes. Subgroups:

$$
\begin{aligned}
& H_{1}=\{e\}, \quad H_{2}=\left\{e, a^{4}\right\}=\{e, j\}, \quad H_{3}=\left\{e, a^{2}, a^{4}, a^{6}\right\}=\{e, b, j, l\}=Z(G), \\
& H_{4}=\left\{e, a, a^{2}, \ldots, a^{7}\right\}=\{e, a, b, \ldots, m\}, \\
& H_{5}=\{e, p\}, \quad H_{6}=\left\{e, a^{4} p\right\}=\{e, t\}, \\
& H_{7}=\left\{e, p, a^{4}, a^{4} p\right\}=\{e, p, j, t\}=H_{2} \otimes H_{5}=H_{2} \otimes H_{6}, \\
& H_{8}=\left\{e, a^{2} p, a^{4}, a^{6} p\right\}=\left\{e, r, r^{2}, r^{3}\right\}=\{e, r, j, v\}, \\
& H_{9}=\left\{e, p, a^{2}, a^{2} p, a^{4}, a^{4} p, a^{6}, a^{6} p\right\}=\{e, p, b, r, j, t, l, v\}=H_{3} \otimes H_{5}=H_{3} \otimes H_{6}, \\
& H_{10}=\left\{e, a p, a^{6}, a^{7} p, a^{4}, a^{5} p, a^{2}, a^{3} p\right\}=\left\{e, q, q^{2}, \ldots, q^{7}\right\}=\{e, q, l, w, j, u, b, s\}, \\
& H_{11}=G .
\end{aligned}
$$

1b) All subgroups except H_{5} and H_{6} are normal, they are unions of conjugation classes:

$$
\begin{aligned}
& H_{2}=C_{1} \cup C_{3}, \quad H_{3}=H_{2} \cup C_{2} \cup C_{4}, \quad H_{4}=H_{3} \cup C_{5} \cup C_{6}, \\
& H_{7}=H_{2} \cup C_{7}, \quad H_{8}=H_{2} \cup C_{9}, \\
& H_{9}=H_{3} \cup C_{7} \cup C_{9}, \quad H_{10}=H_{3} \cup C_{8} \cup C_{10} .
\end{aligned}
$$

1c) Every representation of a finite group is equivalent to a unitary matrix representation. When the group element g is represented by a unitary matrix $\mathbf{D}(g)$ the character of g^{-1} is

$$
\chi\left(g^{-1}\right)=\operatorname{Tr} \mathbf{D}\left(g^{-1}\right)=\operatorname{Tr} \mathbf{D}(g)^{-1}=\operatorname{Tr} \mathbf{D}(g)^{\dagger}=(\operatorname{Tr} \mathbf{D}(g))^{*}=(\chi(g))^{*} .
$$

1d) The dimension d of an irreducible representation is a factor of the group order 16 , hence $d=1,2,4, \ldots$. We must have $d^{2}<16$, since the sum of squares of the dimensions of all irreducible representations is 16 , and there is always the trivial one dimensional representation. Hence $d=1$ or 2 .

1e) There are 10 conjugation classes and 10 irreducible representations. The dimensions are 8 times 1 and 2 times 2 , since that makes a square sum of 16 .

Let χ be a one dimensional character. Since the group elements a and p generate the whole group G, the character values $\chi(a)$ and $\chi(p)$ determine all other values, so that

$$
\chi\left(a^{m} p^{n}\right)=(\chi(a))^{m}(\chi(p))^{n}
$$

Since $a^{8}=p^{2}=e$ we must have (in the one dimensional representation) that

$$
(\chi(a))^{8}=(\chi(p))^{2}=1
$$

Since a and a^{5} are conjugates, we must also have that

$$
\chi(a)=\left(\chi\left(a^{5}\right)\right)=(\chi(a))^{5}
$$

and hence $(\chi(a))^{4}=1$. The eight one dimensional representations therefore have $\chi(a)=$ $\pm 1, \pm \mathrm{i}$ and $\chi(p)= \pm 1$ in all combinations.
It seems a reaonable guess that the two two dimensional irreducible representations are complex conjugates of each other. Then we can find the two characters by means of the orthogonality relations. Yet another trick is the observation that a^{2}, a^{4}, a^{6} commute with all of G, hence in an irreducible representation they must be multiples of the identity, by Schur's lemma. Since $\left(a^{2}\right)^{4}=e$, the matrix representing a^{2} must be λI with $\lambda^{4}=1$.

	$\begin{gathered} C_{1} \\ \{e\} \\ \hline \end{gathered}$	$\begin{gathered} C_{2} \\ \left\{a^{2}\right\} \\ \hline \end{gathered}$	$\begin{gathered} C_{3} \\ \left\{a^{4}\right\} \\ \hline \end{gathered}$	$\begin{gathered} C_{4} \\ \left\{a^{6}\right\} \\ \hline \end{gathered}$	$\begin{gathered} C_{5} \\ \left\{a, a^{5}\right\} \\ \hline \end{gathered}$	$\begin{gathered} C_{6} \\ \left\{a^{3}, a^{7}\right\} \\ \hline \end{gathered}$	$\begin{gathered} C_{7} \\ \left\{p, a^{4} p\right\} \\ \hline \end{gathered}$	$\begin{gathered} C_{8} \\ \left\{a p, a^{5} p\right\} \\ \hline \end{gathered}$	$\begin{gathered} C_{9} \\ \left\{a^{2} p, a^{6} p\right\} \\ \hline \end{gathered}$	$\begin{gathered} C_{10} \\ \left\{a^{3} p, a^{7} p\right\} \\ \hline \end{gathered}$
χ_{1}	1	1	1	1	1	1	1	1	1	1
χ_{2}	1	1	1	1	1	1	-1	-1	-1	-1
$\chi{ }^{2}$	1	1	1	1	-1	-1	1	-1	1	-1
χ_{4}	1	1	1	1	-1	-1	-1	1	-1	1
χ_{5}	1	-1	1	-1	i	-i	1	i	-1	-i
χ_{6}	1	-1	1	-1	i	-i	-1	-i	1	i
χ_{7}	1	-1	1	-1	-i	i	1	-i	-1	i
χ_{8}	1	-1	1	-1	-i	i	-1	i	1	-i
χ_{9}	2	2 i	-2	-2i	0	0	0	0	0	0
χ_{10}	2	-2i	-2	2i	0	0	0	0	0	0

For any character χ, irreducible or reducible, the set $\{g \mid \chi(g)=\chi(e)\}$ is a normal subgroup. Thus, χ_{2} identifies the normal subgroup H_{4}, χ_{3} identifies H_{9}, χ_{4} identifies H_{10}, χ_{5} identifies H_{7}, χ_{6} identifies H_{8}, χ_{7} identifies H_{7}, and χ_{8} identifies H_{8}. There is no irreducible representation identifying H_{2} or H_{3}, but the reducible character $\chi_{3}+\chi_{4}$ identifies H_{3}, and $\chi_{5}+\chi_{6}$ identifies H_{2}.

2a) Take

$$
A=\frac{\mathrm{d}}{\mathrm{~d} r}+W \quad \text { with } \quad W=-\frac{\alpha}{r}+\beta
$$

The definition of the Hermitean conjugate operator A^{\dagger} is that for any two wave functions u, v we have that

$$
\int_{0}^{\infty} \mathrm{d} r(u(r))^{*}(A v(r))=\int_{0}^{\infty} \mathrm{d} r\left(A^{\dagger} u(r)\right)^{*} v(r)
$$

By partial integration, using the boundary conditions on the wave functions u and v, we get that

$$
\int_{0}^{\infty} \mathrm{d} r u^{*} \frac{\mathrm{~d} v}{\mathrm{~d} r}=u(\infty)^{*} v(\infty)-u(0)^{*} v(0)-\int_{0}^{\infty} \mathrm{d} r \frac{\mathrm{~d} u^{*}}{\mathrm{~d} r} v=-\int_{0}^{\infty} \mathrm{d} r\left(\frac{\mathrm{~d} u}{\mathrm{~d} r}\right)^{*} v
$$

This shows that

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} r}\right)^{\dagger}=-\frac{\mathrm{d}}{\mathrm{~d} r} .
$$

Since $W=W(r)$ is a real function of r, we have that $W^{\dagger}=W$, and

$$
A^{\dagger}=-\frac{\mathrm{d}}{\mathrm{~d} r}+W
$$

2b) For any wave function $u=u(r)$ we have that

$$
\begin{align*}
A^{\dagger} A u & =\left(-\frac{\mathrm{d}}{\mathrm{~d} r}+W\right)\left(\frac{\mathrm{d}}{\mathrm{~d} r}+W\right) u=\left(-\frac{\mathrm{d}}{\mathrm{~d} r}+W\right)\left(\frac{\mathrm{d} u}{\mathrm{~d} r}+W u\right) \\
& =-\frac{\mathrm{d}^{2} u}{\mathrm{~d} r^{2}}+\left(-\frac{\mathrm{d} W}{\mathrm{~d} r}+W^{2}\right) u=-\frac{\mathrm{d}^{2} u}{\mathrm{~d} r^{2}}+\left(\frac{\alpha(\alpha-1)}{r^{2}}-\frac{2 \alpha \beta}{r}+\beta^{2}\right) u \tag{1}
\end{align*}
$$

Which shows that

$$
A^{\dagger} A=-\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+\frac{\alpha(\alpha-1)}{r^{2}}-\frac{2 \alpha \beta}{r}+\beta^{2}
$$

To make this resemble the Hamiltonian

$$
H=\frac{\hbar^{2}}{2 m}\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+\frac{\ell(\ell+1)}{r^{2}}-\frac{2}{a_{0} r}\right)
$$

we should choose α as a solution of the equation

$$
\alpha(\alpha-1)=\ell(\ell+1), \quad(\alpha+\ell)(\alpha-\ell-1)=0
$$

that is, either $\alpha=-\ell$ or $\alpha=\ell+1$. We choose $\alpha=\ell+1$. Why? One good reason is that we want to have $\alpha \neq 0$ when $\ell=0$. With this choice for α we must choose

$$
\beta=\frac{1}{\alpha a_{0}}=\frac{1}{(\ell+1) a_{0}}
$$

In summary, we choose

$$
\alpha_{\ell}=\ell+1, \quad \beta_{\ell}=\frac{1}{(\ell+1) a_{0}}, \quad \gamma_{\ell}=\beta_{\ell}^{2}=\frac{1}{(\ell+1)^{2} a_{0}^{2}}
$$

Then we have that

$$
W_{\ell}(r)=-\frac{\ell+1}{r}+\frac{1}{(\ell+1) a_{0}}
$$

and the one dimensional ℓ-dependent Hamiltonian may be written as

$$
H_{\ell}=\frac{\hbar^{2}}{2 m}\left(A_{\ell}^{\dagger} A_{\ell}-\gamma_{\ell}\right)
$$

Now go back to eq. (1), and compute in the same way

$$
\begin{aligned}
A A^{\dagger} u & =\left(\frac{\mathrm{d}}{\mathrm{~d} r}+W\right)\left(-\frac{\mathrm{d}}{\mathrm{~d} r}+W\right) u=\left(\frac{\mathrm{d}}{\mathrm{~d} r}+W\right)\left(-\frac{\mathrm{d} u}{\mathrm{~d} r}+W u\right) \\
& =-\frac{\mathrm{d}^{2} u}{\mathrm{~d} r^{2}}+\left(\frac{\mathrm{d} W}{\mathrm{~d} r}+W^{2}\right) u=-\frac{\mathrm{d}^{2} u}{\mathrm{~d} r^{2}}+\left(\frac{\alpha(\alpha+1)}{r^{2}}-\frac{2 \alpha \beta}{r}+\beta^{2}\right) u
\end{aligned}
$$

Since we chose $\alpha=\ell+1$, we get that $\alpha(\alpha+1)=(\ell+1)(\ell+2)$, and

$$
H_{\ell+1}=\frac{\hbar^{2}}{2 m}\left(A_{\ell} A_{\ell}^{\dagger}-\gamma_{\ell}\right)
$$

2c) The equation $A_{\ell} u=0$ is this:

$$
\frac{1}{u} \frac{\mathrm{~d} u}{\mathrm{~d} r}-\frac{\ell+1}{r}+\frac{1}{(\ell+1) a_{0}}=0 .
$$

It is easily integrated to give that

$$
\ln u=(\ell+1) \ln r-\frac{r}{(\ell+1) a_{0}}+\ln C,
$$

where C is an integration constant. That is,

$$
u(r)=u_{\ell}^{(0)}(r)=C r^{\ell+1} \mathrm{e}^{-r /\left((\ell+1) a_{0}\right)}
$$

This is the ground state of H_{ℓ} because it is an eigenstate of the operator $A_{\ell}^{\dagger} A_{\ell}$ with eigenvalue 0 , and an operator of the form $A^{\dagger} A$ is positive semidefinite: it has only non-negative eigenvalues. Proof: if $A^{\dagger} A|\psi\rangle=\lambda|\psi\rangle$ and $\langle\psi \mid \psi\rangle=1$, then

$$
\lambda=\langle\psi| A^{\dagger} A|\psi\rangle=\langle\phi \mid \phi\rangle \geq 0 \quad \text { with } \quad|\phi\rangle=A|\psi\rangle .
$$

The energy in this state is

$$
E=-\frac{\hbar^{2}}{2 m} \gamma_{\ell}=-\frac{1}{(\ell+1)^{2}} \frac{\hbar^{2}}{2 m a_{0}^{2}} .
$$

The equation $A_{\ell}^{\dagger} u=0$ is this:

$$
-\frac{1}{u} \frac{\mathrm{~d} u}{\mathrm{~d} r}-\frac{\ell+1}{r}+\frac{1}{(\ell+1) a_{0}}=0 .
$$

It has the solution

$$
u(r)=C \frac{1}{r^{\ell+1}} \mathrm{e}^{\left.r /(\ell+1) a_{0}\right)} .
$$

This is not an acceptable wave function, because it is infinite in both limits $r \rightarrow 0$ and $r \rightarrow \infty$. Therefore it is not the ground state of $H_{\ell+1}$.

2d) If $H_{\ell} u=E u$ and $v=A_{\ell} u$, then
$H_{\ell+1} v=-\frac{\hbar^{2}}{2 m}\left(A_{\ell} A_{\ell}^{\dagger}-\gamma_{\ell}\right) A_{\ell} u=A_{\ell}\left(-\frac{\hbar^{2}}{2 m}\left(A_{\ell}^{\dagger} A_{\ell}-\gamma_{\ell}\right)\right) u=A_{\ell} H_{\ell} u=A_{\ell} E u=E v$.
If u is the ground state of H_{ℓ}, then $A_{\ell} u=0$, and there is no eigenstate of $H_{\ell+1}$ with energy E.
In the same way, if $H_{\ell+1} v=E v$ and $w=A_{\ell}^{\dagger} v$, then
$H_{\ell} w=-\frac{\hbar^{2}}{2 m}\left(A_{\ell}^{\dagger} A_{\ell}-\gamma_{\ell}\right) A_{\ell}^{\dagger} v=A_{\ell}^{\dagger}\left(-\frac{\hbar^{2}}{2 m}\left(A_{\ell} A_{\ell}^{\dagger}-\gamma_{\ell}\right)\right) v=A_{\ell}^{\dagger} H_{\ell+1} v=A_{\ell}^{\dagger} E v=E w$.

2e) We have found energy eigenvalues

$$
E_{n}=-\frac{1}{n^{2}} \frac{\hbar^{2}}{2 m a_{0}^{2}} \quad \text { with } \quad n=1,2, \ldots
$$

And we have found one eigenstate of H_{ℓ} with energy E_{n} for every $\ell=n-1, n-2, \ldots, 1,0$. For a given value of ℓ and a given eigenstate of H_{ℓ} there are $2 \ell+1$ states of the three dimensional hydrogen atom with L_{z} quantized to $m \hbar$ and $m=-\ell,-\ell+1, \ldots, \ell$. Thus the total degeneracy of the energy level E_{n} is

$$
d_{n}=\sum_{\ell=0}^{n-1}(2 \ell+1)=1+3+5+\cdots+(2 n-1)=n^{2}
$$

3a) The non-zero commutators are:

$$
\begin{array}{lll}
{\left[\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}\right]=\boldsymbol{\lambda}_{3},} & {\left[\boldsymbol{\lambda}_{2}, \boldsymbol{\lambda}_{3}\right]=\boldsymbol{\lambda}_{1},} & {\left[\boldsymbol{\lambda}_{3}, \boldsymbol{\lambda}_{1}\right]=\boldsymbol{\lambda}_{2},} \\
{\left[\boldsymbol{\lambda}_{1}, \boldsymbol{\kappa}_{2}\right]=\boldsymbol{\kappa}_{3},} & {\left[\boldsymbol{\lambda}_{2}, \boldsymbol{\kappa}_{3}\right]=\boldsymbol{\kappa}_{1},} & {\left[\boldsymbol{\lambda}_{3}, \boldsymbol{\kappa}_{1}\right]=\boldsymbol{\kappa}_{2},} \\
{\left[\boldsymbol{\kappa}_{1}, \boldsymbol{\lambda}_{2}\right]=\boldsymbol{\kappa}_{3},} & {\left[\boldsymbol{\kappa}_{2}, \boldsymbol{\lambda}_{3}\right]=\boldsymbol{\kappa}_{1},} & {\left[\boldsymbol{\kappa}_{3}, \boldsymbol{\lambda}_{1}\right]=\boldsymbol{\kappa}_{2},} \\
{\left[\boldsymbol{\kappa}_{1}, \boldsymbol{\kappa}_{2}\right]=-\boldsymbol{\lambda}_{3},} & {\left[\boldsymbol{\kappa}_{2}, \boldsymbol{\kappa}_{3}\right]=-\boldsymbol{\lambda}_{1},} & {\left[\boldsymbol{\kappa}_{3}, \boldsymbol{\kappa}_{1}\right]=-\boldsymbol{\lambda}_{2} .}
\end{array}
$$

3b) Since $\boldsymbol{\lambda}_{1}^{3}=-\boldsymbol{\lambda}_{1}$ we have that

$$
\begin{aligned}
\exp \left(\alpha \boldsymbol{\lambda}_{1}\right) & =\mathbf{I}+\alpha \boldsymbol{\lambda}_{1}+\frac{1}{2!}\left(\alpha \boldsymbol{\lambda}_{1}\right)^{2}+\frac{1}{3!}\left(\alpha \boldsymbol{\lambda}_{1}\right)^{3}+\cdots \\
& =\mathbf{I}+\left(\alpha-\frac{1}{3!} \alpha^{3}+\frac{1}{5!} \alpha^{5}-\cdots\right) \boldsymbol{\lambda}_{1}+\left(\frac{1}{2!} \alpha^{2}-\frac{1}{4!} \alpha^{4}+\cdots\right) \boldsymbol{\lambda}_{1}^{2} \\
& =\mathbf{I}+\sin \alpha \boldsymbol{\lambda}_{1}+(1-\cos \alpha) \boldsymbol{\lambda}_{1}^{2} \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right) .
\end{aligned}
$$

And since

$$
\begin{aligned}
& \cos (\mathrm{i} \chi)=\frac{\mathrm{e}^{\mathrm{i}(\mathrm{i} \chi)}+\mathrm{e}^{-\mathrm{i}(\mathrm{i} \chi)}}{2}=\frac{\mathrm{e}^{-\chi}+\mathrm{e}^{\chi}}{2}=\cosh \chi, \\
& \sin (\mathrm{i} \chi)=\frac{\mathrm{e}^{\mathrm{i}(\mathrm{i} \chi)}-\mathrm{e}^{-\mathrm{i}(i \chi)}}{2 \mathrm{i}}=\frac{\mathrm{e}^{-\chi}-\mathrm{e}^{\chi}}{2 \mathrm{i}}=\mathrm{i} \sinh \chi,
\end{aligned}
$$

we have that

$$
\exp \left(\chi \boldsymbol{\kappa}_{1}\right)=\exp \left(\mathrm{i} \chi \boldsymbol{\lambda}_{1}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\mathrm{i} \chi) & -\sin (\mathrm{i} \chi) \\
0 & \sin (\mathrm{i} \chi) & \cos (\mathrm{i} \chi)
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cosh \chi & -\mathrm{i} \sinh \chi \\
0 & \mathrm{i} \sinh \chi & \cosh \chi
\end{array}\right) .
$$

The physical interpretation is that $\exp \left(\alpha \boldsymbol{\lambda}_{1}\right)$ is a rotation by an angle α about the 1 axis (the x axis), whereas $\exp \left(\chi \boldsymbol{\kappa}_{1}\right)$ is a Lorentz boost along the 1 (or $\left.x\right)$ axis.
Let us elaborate on the last point. The Lorentz boost transforms the coordinates $x^{\mu}=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ to $\widetilde{x}^{\mu}=\Lambda_{\nu}^{\mu} x^{\nu}$, where

$$
\widetilde{x}^{0}=\gamma\left(x^{0}-\beta x^{1}\right), \quad \widetilde{x}^{1}=\gamma\left(x^{1}-\beta x^{0}\right), \quad \widetilde{x}^{2}=x^{2}, \quad \widetilde{x}^{3}=x^{3} .
$$

The velocity between the two reference systems is $c \beta$, and $\gamma=1 / \sqrt{1-\beta^{2}}$.
The electromagnetic field tensor

$$
c F^{\mu \nu}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -c B_{z} & c B_{y} \\
E_{y} & c B_{z} & 0 & -c B_{x} \\
E_{z} & -c B_{y} & c B_{x} & c 0
\end{array}\right)
$$

transforms as follows,

$$
\widetilde{F}^{\mu \nu}=\Lambda_{\rho}^{\mu} \Lambda_{\sigma}^{\nu} F^{\rho \sigma} .
$$

This gives that

$$
\begin{aligned}
\widetilde{E}_{x} & =c \widetilde{F}^{10}=\Lambda_{\rho}^{1} \Lambda_{\sigma}^{0} c F^{\rho \sigma}=\Lambda_{1}^{1} \Lambda_{0}^{0} c F^{10}+\Lambda_{0}^{1} \Lambda_{1}^{0} c F^{01}=\gamma^{2}\left(1-\beta^{2}\right) E_{x}=E_{x}, \\
\widetilde{E}_{y} & =c \widetilde{F}^{20}=\Lambda_{\rho}^{2} \Lambda_{\sigma}^{0} c F^{\rho \sigma}=\Lambda_{2}^{2}\left(\Lambda_{0}^{0} c F^{20}+\Lambda_{1}^{0} c F^{21}\right)=\gamma\left(E_{y}-\beta c B_{z}\right), \\
\widetilde{E}_{z} & =c \widetilde{F}^{30}=\Lambda_{\rho}^{3} \Lambda_{\sigma}^{0} c F^{\rho \sigma}=\Lambda_{3}^{3}\left(\Lambda_{0}^{0} c F^{30}+\Lambda_{1}^{0} c F^{31}\right)=\gamma\left(E_{z}+\beta c B_{y}\right), \\
c \widetilde{B}_{x} & =c \widetilde{F}^{32}=\Lambda_{\rho}^{3} \Lambda_{\sigma}^{2} c F^{\rho \sigma}=\Lambda_{3}^{3} \Lambda_{2}^{2} c F^{32}=c F^{32}=c B_{x}, \\
c \widetilde{B}_{y} & =c \widetilde{F}^{13}=\Lambda_{\rho}^{1} \Lambda_{\sigma}^{3} c F^{\rho \sigma}=\Lambda_{3}^{3}\left(\Lambda_{1}^{1} c F^{13}+\Lambda_{0}^{1} c F^{03}\right)=\gamma\left(c B_{y}+\beta E_{z}\right), \\
c \widetilde{B}_{z} & =c \widetilde{F}^{21}=\Lambda_{\rho}^{2} \Lambda_{\sigma}^{1} c F^{\rho \sigma}=\Lambda_{2}^{2}\left(\Lambda_{1}^{1} c F^{21}+\Lambda_{0}^{1} c F^{20}\right)=\gamma\left(c B_{z}-\beta E_{y}\right) .
\end{aligned}
$$

We may write the same transformation more compactly in matrix form:

$$
\left(\begin{array}{c}
c \widetilde{B}_{x}+\mathrm{i} \widetilde{E}_{x} \\
c \widetilde{B}_{y}+\mathrm{i} \widetilde{E}_{y} \\
c \widetilde{B}_{z}+\mathrm{i} \widetilde{E}_{z}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \gamma & -\mathrm{i} \gamma \beta \\
0 & \mathrm{i} \gamma \beta & \gamma
\end{array}\right)\left(\begin{array}{l}
c B_{x}+\mathrm{i} E_{x} \\
c B_{y}+\mathrm{i} E_{y} \\
c B_{z}+\mathrm{i} E_{z}
\end{array}\right) .
$$

The transformation matrix is $\exp \left(\chi \boldsymbol{\kappa}_{1}\right)$ with $\cosh \chi=\gamma, \sinh \chi=\gamma \beta$.
The parameter χ is called rapidity.
3c) The complex scalar product $\vec{z} \cdot \vec{z}=\mathbf{z}^{\top} \mathbf{z}$ is invariant because

$$
\mathbf{C}^{\top}=\exp \left(\mathbf{L}^{\top}\right)=\exp (-\mathbf{L})=\mathbf{C}^{-1},
$$

and

$$
(\mathbf{C z})^{\top}(\mathbf{C z})=\mathbf{z}^{\top} \mathbf{C}^{\top} \mathbf{C z}=\mathbf{z}^{\top} \mathbf{z} .
$$

3d) With $\vec{G}=c \vec{B}+\mathrm{i} \vec{E}$ the complex Lorentz invariant is

$$
\vec{G} \cdot \vec{G}=c^{2} \vec{B}^{2}-\vec{E}^{2}+2 c \mathrm{i} \vec{B} \cdot \vec{E}
$$

The real part $c^{2} \vec{B}^{2}-\vec{E}^{2}$ and the imaginary part $\vec{B} \cdot \vec{E}$ are both invariant under continuous Lorentz transformations.
The Lorentz force $\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})$ on a point charge q moving with velocity \vec{v} changes sign, $\vec{F} \mapsto-\vec{F}$, under a parity inversion. Since $\vec{v} \mapsto-\vec{v}$ under parity, this means that $\vec{E} \mapsto-\vec{E}$ and $\vec{B} \mapsto \vec{B}$. Hence $c^{2} \vec{B}^{2}-\vec{E}^{2}$ is parity invariant, but $\vec{B} \cdot \vec{E}$ is not parity invariant.
The two invariants are (up to factors) $F^{\mu \nu} F_{\mu \nu}$ and $\epsilon^{\kappa \lambda \mu \nu} F_{\kappa \lambda} F_{\mu \nu}$ where $\epsilon^{\kappa \lambda \mu \nu}$ is the totally antisymmetric Levi-Civita symbol.

