SOLUTION

EXAMINATION IN: MNFFY 221/SIF 4082 Energy and Environmental Physics

Monday 3. December 2001

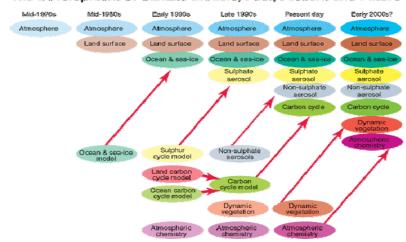
Problem 1

a) Radiative forcing

The energy balance at the top of the atmosphere requires a constant flux Flux out – flux in = $-\Delta I$

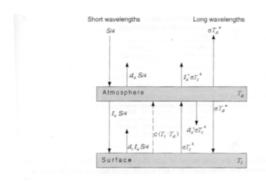
Assume a doubling of the equivalent CO_2 atmosphere, causes an effective reduction of the earth's long wavelength radiation, magnitude ΔI . To compensate for this change in ΔI , the earth temperature increase. Radiative forcing (given in W/m^2) describe the direct effect of a change in the concentration of a specific gas or atmospheric component.

b)


A certain change in temperature will cause a lot of effects reinforcing it. A few counteracting – thus feedback mechanisms. Some examples for the climate research

- 1) Melting of ice snow, reduced surface albedo
- 2) Increased water vapour smaller transmission t_a higher backscatter
- 3) Same for increased cloud cover
- a) higher sea temp gives less CO₂ in ocean higher air concentration. b) high polar temp causes decreased ocean circulation cecreased CO₂ absoprtion c) faster decay of organic material gives more CO₂ and CH₄
- 5) Increased CO₂ increased growth reduced albedo.

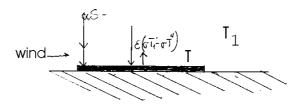
c)


atmosphere, land surface, ocean-sea ice, sulphate aerosol, non sulphate aerosols, carbon cycle, dynamic vegetation, atmospheric chemistry.

The Development of Climate models, Past, Present and Future

Problem 2

a) Fig. 3.2 in textbook (B&G) p. 31


Short wavelength radiation, Long wavelength radiation, Convection

b)

Figure: describes some of the fluxes. Conduction between plate and earth is not marked on the figure.

T: surface temperature

 T_1 : ambient temperature

$$\alpha S + \epsilon \left(\sigma T_1^4 - \sigma T^4\right) + h_c \left(T_1 - T\right) + q_t = 0$$

 α : Absorption coefficient for the surface, = 1 for a black surface

S: Short wave solar irradiance

ε: emission coefficient for thermal radiation

σ: Boltzmans constant

 h_c heat transfer number for convection depending on wind speed, for instance h_c = 23 when wind speed = 5 m/s q_t : transient heat current, conduction. (relevant for bottom side of the plate)

c)

examples p. 376 in T&W)

$$E_0 = \sum_{z=1}^{2} \rho_z A c_r G(z-z_1) dz = \rho_z A c_r G(z_2 - z_1)^2 / 2$$

 ρ_{r} rock density,

A: Cross section to be studied

c.: Specific heat capacity

G: temperatur gradient dt/dz

z depth

E₀ useful heat content

ex. At 7 km the temperature 40x7=280 K above the surface.

At 140/40 = 3.5 km there is no useful heat.

 $E_0 = 2700 \text{ [kg/m}^3] \text{ 1 km}^2 820 \text{ [J/kg K]} (3.5)^2 \text{ [km}^2] 40/2 \text{ [K/km]} = 5.42 \cdot 10^{17} \text{ J/km}^2$

Problem 3

Typical structure for a solar cell:

Fig. 7.1 from T`&W

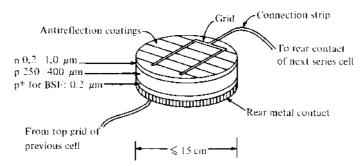


Fig. 7.1 Typical structure of n-p junction solar cell. The cover (glass or plastic) above the cell, and the filler between the cover and the cell, are not shown. BSF: back surface field

p-n junction

p and n type material (p becomes slightly negative, n positive), Voltage $V_{\scriptscriptstyle B}$ across the junction. ($V_{\scriptscriptstyle B}\approx 0.6 V$) Junction currents: Generation $I_{\scriptscriptstyle G}$ Recombination $I_{\scriptscriptstyle R}$ (drift) ,

Biasing the material forward biasing cause a current to be run.

Forward bias $I_{g} \ll I_{R}$, Reverse bias: $I_{R} = 0$

Current I is proportional with the forward biased voltage V., $I = I_0$ for reverse biased cell. I_0 depends on temperature.

Power generation from a solar cell corresponds to conditions of diode forward bias. Potential difference across the semiconductor cell $V_{\scriptscriptstyle B}$ is due to both forward biasing and band displacement. Will vary with the external current I. Absorption of active photons (hv $E_{\scriptscriptstyle g}$) to create a further current with power generating capability. The equivalent circuit for a solar cell.

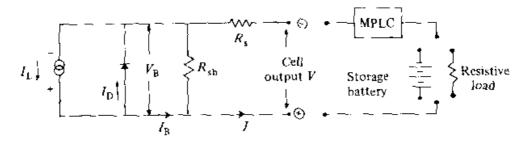
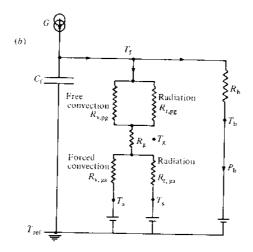


Fig. 7.14 Equivalent circuit of a solar cell. Also drawn are examples of loads with maximum power load control (MPLC) to insure peak power operation


Limiting cell efficiency.

- 1. Top surface contact obstruction (loss 3%)
- 2. Reflection at the top surface (loss 1%)
- 3. Photon energy less than band gap (loss 23%)
- 4. Excess photon energy (loss 33%)
- 5. Quantum efficiency (loss 0.4%)
- 6. Collection efficiency
- 7. Voltage factor (loss 22%)
- 8. Curve factor (loss 4%)
- 9. Additional curve factor A (loss 5%)
- 10. Series, shunt resistance,

Total efficiency: Delivered power (for Si 10-14%)

b)

Figure 5.4 (T&W)

$$\begin{split} R_{tot} &= \left\{1/R_b + 1/R_{pa}\right\}^{\text{-1}} \\ R_{pa} &= \left\{1/R_{v,pg} + 1/R_{r,\,pg}\right\}^{\text{-1}} + R_g + \left\{1/R_{v,ga} + 1/R_{r,\,ga}\right\}^{\text{-1}} \end{split}$$

c)

Selective surfaces can be a metal-semiconductor stack.

High absorption and emission in short wavelength range ($\lambda < 3 \mu m$), low for thermal radiation ($\lambda > 3 \mu m$).

Semiconductors are more ideal and metal. By combining both an optimum can be reached. Good conduction from the material into the metal.

Problem 4

a)

Dominant process

235
U + n(slow) \rightarrow 236 U \rightarrow X + Y + vn (fast)

 $v \approx 2.34$, fast neutrons have energy on average 2 MeV, Slow neutrons are thermal T = 293 K, Fission products can vary.

A parentheses: In real life 238 U will also absorb neutrons, leading to 239 U and 239 Np to 239 Pu. 239 Pu is fissinable itself. At the end of the fission process it produces 50% of the fissions. 239 Pu has different properties than 235 U. Reactors has to be design according to their planed lifetime.

THese fast neutrons has to be slowed down by a moderator material. More efficient as the mass of the moderator material reduces, thus H_2O and D_2O is mostly used.

Description of main components in the reactor.

Fig. 4.38 (B&G)

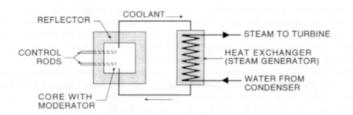


Figure 4.38 Scheme of a nuclear reactor system. The heat from the reactor core is taken away by a coolant. A reflector tries to keep as many neutrons in the core as possible, whereas control rods can absorb superfluous neutrons if necessary

b) $\eta : \text{fission yield; number of fast neutrons per slow neutron absorbed, } \eta < \nu. \\ \eta = \nu \{ [N(235)\sigma_f(235)]/[N(235)\{ \sigma_f(235) + \sigma_c(235)\} + N(238) \sigma_c(238)] \} \\ \sigma_f \text{ cross section for slow neutron to be absorbed without fission } \\ \sigma_f \text{ cross section for slow neutron to be absorbed with fission }$

 ϵ : the fast fission factor . Number of fast neutrons inducing a new fission in ^{238}U and ^{235}U or ϵ , ϵ is slightly higher than 1.

p: resonance <u>escape</u> probability. Probability of fast neutrons not to be absorbed by ²³⁸U as it is slowed down by the moderator due to resonance phenomena in moderator material. p increase with less moderator matieral

f: thermal utilization factor. Slow neutrons absorbed by the moderator material or cladding of fuel elements. f increase with more moderator material.

The product pf has a maximum at a certain ratio between moderator material and fuel.

Number of fast neutrons will be: ηερη. n number of slow neutrons

A fraction of fast neutrons l_f will leak out of the reactor, leaving (1- l_f) and similar a fraction l_s of slow neutron can leak out of the reactor (1- l_s), but due to the size of the reactors this effect can usually be ignored.

The total number of available slow neutrons ready for a new round of fission will be

 $nk = \eta \epsilon pfn$, k is called multiplication factor.

 $k = \eta \epsilon p f$

The magnitude of k depends on the ratio of moderator material and fuel are approximately 1 (between 0.9 and 1.1)

c)

Bq: number of nucleus decaying per second [s⁻¹]

Gy: Energy absorbed per kg [J/kg]

Sv: 1 Gy • Q = 1 SV [biological weighted J/kg]

Q: quality factor dependent on type of radiation,

Q=1 for X-rays, γ -rays, electrons and muons

Q=5 for neutrons with energies < 10 keV, > 20 MeV and protons with energy > 2 MeV

Q=10 for neutrons with energies from 10 keV to 100 keV and 2 MeV to 20 MeV

Q=20 for other neutrons and α -particles and other particles with a charge larger than one

Radon is the largest health risk in Western world.