Final Exam in SIF4058 Computational Physics

Spring 2001

Use any aid and discuss the problems with whomever. However, you should of course write
the programs and do the data analysis yourself. The solutions should be sent to me by
email at 09:00 on Wednesday, June 13, in the form of a report written in any popular
format: TeX, LaTeX, Word, PDF, Postscript... Good luck!

Problem 1 concerns the travelling salesman problem. It goes as follows: A travelling
salesman based in — say Oslo — goes on a tour of European cities, N = 15 in all (including
Oslo), visiting each once and returning to Oslo afterwards. Write an algorithm that finds
the itinerary (i.e. order in which the cities are to be visited) which gives the shortest travel

distance. What is this shortest distance in kilometers?

Here are the 15 cities and their positions given in degrees and minutes:

Athens 37 58 N 2343 E
Barcelona 41 23 N 0211 E
Bordeaux 44 50 N 00 34 W
Brno 49 13 N 16 40 E
Budapest 47 30 N 1905 E
Cork 51 54 N 08 28 W
Glasgow 55 53 N 04 15 W
Hamburg 53 33 N 09 59 E
Madrid 40 24 N 03 41 W
Naples 40 51 N 1417 E
Nice 43 42 N 07 15 E
Oslo 59 55 N 1045 E
Paris 48 52 N 02 20 E
Reykjavik 64 09 N 21 51 W
Stockholm 59 20 N 18 03 E

Problem 2 In 1882 Heinrich Hertz calculated the force as a function of deformation of

two elastic spheres that are pressed together [1]. The force F' is that which is applied
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along the axis passing through the two centers of the spheres, as they are pressed together.
Assuming that the radii of the spheres are equal, the deformation D is the radius of the

spheres (R) minus one half the actual distance between their centers. Hertz found the

1— 2\ 2/3 1 1/3
D — <6 E“) <E> F2/3 (1)

where o is the Poisson ratio and E the elastic constant. (See Ref. [2] for a detailed analytical

following law:

derivation of this result.) This result forms the core of Hertz contact theory, and plays a
fundamental réle in many fields of physics, such as tribology (the study of friction) and

granular media.

The task here is to verify numerically the law

D x F?/3 (2)

In order to do so, we start by simplifying the problem by noticing that the plane formed by
the contact between the spheres is a symmetry plane. The problem is therefore equivalent
to pressing a soft sphere into an infinitely rigid plane. Next simplification is to assume
that it is the sphere that is infinitely rigid, and not the plane. (This change modifies
the problem. However, Eq. (2) remains intact.) We assume that the plane forms the
boundary of an inifinte elastic half space with elastic constant E (which you should set
equal to 100) and Poisson ratio (o = 0.25). We ignore all forces and deformations that
are not prependicular to the symmetry plane. The reason for these assumptions is that we
may now construct the Green function G(z',y'; z, y) that connects a point force f applied
vertically at a point (z',y’) in the plane with a deformation z at a point (z,y) (see Ref.
[2], page 29),

2(z,y) = Gz,y;2',y) fl2'y') . (3)

If f(z,y) is a field (i.e. not just a point force), Eq. (3) becomes

z(z,y) = / G(z,y; 2 y") f(a!,y') da’ dy' . (4)

In order to implement this problem on the computer, we need to discretize the system. We
represent the plane and the sphere by nodes (7, j) placed in a square network of size L x L
(measured in units of the lattice constant a which we for convenience set equal to unity).
The sphere makes first contact with the plane at (L/2, L/2). After integrating Eq. (3) over

2



the square with the four corners (x — a/2,y —a/2), (r —a/2,y+a/2), (x+a/2,y + a/2),
and (z 4+ a/2,y — a/2), and setting (i,7) = (z,y) and (i',j") = («',y’), we find

2(i, j) = Z G, 5;1, i) f(i', 5 (5)

where f(i,7) is the total force on the square of size a x a enclosing node (7,j). Let us

define u =i — i’ and v = j — j'. The discretized Green function is then given by [3]

TE ) = (utaf2) | YD 0+ a/D? 4 (uta/2N)]
1—02 G( ) ) _( + /2) 1 (U_a/2)+[(U—a/2)2+(u+a/2)2)]1/2
[ (uta/2) + [(v+a/2)? + (u+ a/2))
+ (’U—|—CL/2) 1 (u—a,/2)—}—[(U+a/2)2+(u_a/2)2)]1/2 (6)
) [0/ 0= 02+ (a2
(v4a/2) + [(v+a/2)2 + (u — a/2)2)]/?
v —a 0 [(u—a/2) + [(v—a/2)?+ (u—a/2)?)]'/?
* /21 (u+a/2)+ [(v—a/2)2+ (u+ a/2)2)]1/2

When the sphere is squeezed into the plane, there will be areas where there is direct contact
between the sphere and the plane and areas where they are not in contact. Where there is
no contact, the force f is zero, while where there is contact, the deformation of the plane
is known (since the sphere is infinitely rigid and we control how deep it is indented into

the plane).

In order to implement these mixed boundary conditions (force known where there is no
contact, and deformation known where there is contact), one may follow the prescription

given in Ref. [4]. We describe it in the following:

We define the diagonal L? x L? matrix, K, with elements equal to 1 on contact nodes
and 0 on free (no-contact) nodes. Clearly the vector K7 is zero everywhere there is no
contact. At contact points, K7 is equal to the imposed deformation given by the shape of

the sphere. Eq. (5) can be rewritten as,
GI-K)f+GKf=(1-K)7+K?z, (7)

where we use matrix-vector notation, and I is the identity. This form is convenient because
as mentioned above, K7 is a known quantity (boundary condition). In addition, the vector

(I-K) f is always zero because the force f is nonzero only at contact points. Putting the
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unknowns on the left hand side and the boundary conditions on the right hand side of Eq.
(7) we obtain,
GKf—- (I-K)Z=Kz. (8)

Now define the vector ¥ representing all the unknown quantities. Clearly,
F=Kf+(I-K)7. (9)

With this definition, and noting that K(I-K) = (I-K)K =0, K? =K, and (I-K)? =
(I — K) we can write Eq. (9) as

GKi — (I - K)7 = K7, (10)

and finally
I-(I-G)K)Z=Kz. (11)

Eq. (11) is of the familiar form, A¥ = b which can be solved using, for example, the
Conjugate Gradient (CG) method. The difficulty is that the Green function G, Eq. (6),
is represented by a full L? x L? matrix. This will lead to the number of operations
per iteration scaling as L*. The way to overcome this difficulty is by doing the matrix
multiplications involving G in Fourier space by using FFTs. Why this is so, may be seen
from the structure of the Green function. (If you have problems getting the FFTs to work,

you can still work in real space using e.g. the CG algorithm.)

One more technical detail remains. The matrix K, which indicates the contact points
needs to be determined. The problem is that as we push the sphere into the elastic plane,
the latter deforms. Therefore, the contact area is not equal to the area obtained by simply
assuming that the plane will follow the contour of the sphere. We obtain the correct
contact area as follows. Our initial assumption is that the contact area is equal to the area
obtained from the plane following the shape of the sphere exactly. This determines the
initial K which is then used in Eq. (11). The solution thus obtained gives the forces where
there is contact and the deformations where there is none. Some of the forces thus obtained
are negative since the elastic surface is trying to pull away from the rough surface. We
therefore modify K by zeroing the the elements corresponding to nodes where the force is
negative, and we solve again. We repeat this process until there are no nodes with negative

forces. This algorithm always converges giving the correct contact area and forces.

Write a program that solves Eq. (11) for different indentations of the rigid sphere, and use
the result to verify the Hertz contact law, Eq. (2). T used a 512 x 512 lattice and a sphere
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with radius R = 6000 when testing this out. This is a very large system, and it is not

necessary for you to do so.
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