Norges teknisk-naturvitenskapelige universitet NTNU

Institutt for fysikk Fakultet for naturvitenskap og teknologi

Contact during the exam: Per Christian Hemmer

Exam in TFY4205 Quantum Mechanics II Thursday, December 12, 2013

15:00-19:00

Allowed help: Alternativ B
Approved pocket calculator.
K. Rottman: Matematisk formelsamling (All editions)
O.H. Jahren og K.J. Knutsen: Formelsamling i matematikk.

This problem set consists of 3 pages.

Problem 1

The hamiltonian of a harmonic oscillator in one dimension is

$$H_0 = \frac{1}{2m} p^2 + \frac{m\omega^2}{2} x^2 .$$
 (1)

a) Use the relations

$$a = i \sqrt{\frac{1}{2m\hbar\omega}} p + \sqrt{\frac{m\omega}{2\hbar}} x , \qquad (2)$$

and

$$a^{\dagger} = -i \sqrt{\frac{1}{2m\hbar\omega}} p + \sqrt{\frac{m\omega}{2\hbar}} x , \qquad (3)$$

together with the commutator $[x, p] = i\hbar$ to derive the commutator

$$a, a^{\dagger}] = 1 \tag{4}$$

between the creation and annihilation operators a^{\dagger} and a.

- b) Derive the energy spectrum E_n for the harmonic oscillator by solving the Schrödinger equation $H_0|n\rangle = E_n|n\rangle$ using the creation and annihilation operators a^{\dagger} and a.
- c) Find the matrix elements $\langle m|a|n\rangle$ and $\langle m|a^{\dagger}|n\rangle$.
- **d)** Find the matrix elements $\langle m|x|n\rangle$ and $\langle m|p|n\rangle$.
- e) Find the matrix elements $\langle m|x^2|n\rangle$ and $\langle m|p^2|n\rangle$.

f) Determine $\Delta x \Delta p$ for the harmonic oscillator in energy eigenstate state $|n\rangle$. We define

$$\Delta x^2 = \langle x^2 \rangle - \langle x \rangle^2 , \qquad (5)$$

and correspondingly for Δp .

g) Consider the result for the diagonal elements $\langle n|x^2|n\rangle$. What does it have to say about the partitioning of the total energy E_n between the potential and kinetic energy?

Problem 2

We now add a perturbation to the harmonic oscillator hamiltonian. In the following, we ask for *exact* expressions, and not approximations.

- a) If the perturbation is $H' = \alpha_1 x$, what is the energy spectrum of the perturbed hamiltonian $H_a = H_0 + H'$? Denote the energy eigenstates of H_a by $|n'\rangle$.
- b) If the perturbation is $H^{"} = \alpha_2 x^2$, what is the energy spectrum of the perturbed hamiltonian $H_b = H_0 + H^{"}$? Denote the energy eigenstates of H_b by $|n^"\rangle$.
- c) How can one express $|n'\rangle$ and $|n''\rangle$ in terms of the eigenstates of $H_0, |n\rangle$?

In the coordinate representation we have that the wave function is given by

$$\psi_n(x) = \langle x | n \rangle = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \frac{1}{\sqrt{2^n n!}} H_n\left(\sqrt{\frac{m\omega}{\hbar}} x\right) e^{-m\omega x^2/2\hbar} , \qquad (6)$$

where H_n is a hermite polynomial.

- d) What is $\langle x|n'\rangle$?
- e) What is $\langle x|n^{"}\rangle$?

We now consider the Stark effect. An charge q is bound in a harmonic potential so that $H = H_0$. An electric field \mathcal{E} is turned on. This adds the perturbation $H' = -qx\mathcal{E}$ to the hamiltonian.

f) Find the average dipole moment $\langle qx \rangle$ as a function of \mathcal{E} when the perturbed harmonic oscillator is in an energy eigenstate $|n'\rangle$.

Problem 3

We consider perturbation theory in the following. Let $E_n^{(0)}$ be the energy of the unperturbed hamiltonian H_0 . We add a perturbation λH_1 where λ is a small dimensionless number. The change in energy is then

$$E_n = E_n^{(0)} + \lambda \langle n^{(0)} | H_1 | n^{(0)} \rangle + \lambda^2 \sum_{m \neq n} \frac{|\langle m^{(0)} | H_1 | n^{(0)} \rangle|^2}{E_n^{(0)} - E_m^{(0)}} + \mathcal{O}(\lambda^3) , \qquad (7)$$

where $|n^{(0)}\rangle$ is the energy eigenstate corresponding to $E_n^{(0)}$ of the unperturbed hamiltonian H_0 .

- a) Calculate to second order in λ the change of the harmonic oscillator energy levels E_n when $H_1 = \alpha_1 x$?
- b) Calculate to second order in λ the change of the harmonic oscillator energy levels E_n when $H_1 = \alpha_2 x^2$?

Page 3 of 3

Problem 4

The lowest-order Born approximation to the scattering amplitude from a potential $V(\vec{r})$ is given by

$$f^{B} = -\frac{m}{2\pi\hbar^{2}} \int d^{3}\vec{r} \, V(\vec{r}) e^{-i(\vec{k}-\vec{k'})\cdot\vec{r}} \,. \tag{8}$$

Here \vec{k} and \vec{k}' point along the momentum direction of the scattered particle before and after the scattering event. We place the z-direction in such a way that it points along \vec{k} . In polar coordinates we then have $k'_x = k \sin \theta \cos \phi$, $k'_y = k \sin \theta \sin \phi$ and $k'_z = k \cos \theta$, where $k = |\vec{k}|$.

a) Find the scattering cross section $(d\sigma/d\Omega)$ in polar coordinates when

$$V(\vec{r}) = \frac{\alpha}{abc} e^{-(x/a)^2 - (y/b)^2 - (z/c)^2} , \qquad (9)$$

where α , a, b and c are all positive constants, $a \ge b \ge c$ and $\vec{r} = (x, y, z)$.

(Hint:
$$\int_{-\infty}^{+\infty} \exp(-x^2) dx = \sqrt{\pi}$$
.)

- **b**) What do the equipotential surfaces of V look like when
 - 1) a > b > c? 2) a = b > c? 3) a = b = c?
- c) Difficult last question: Interpret $d\sigma/d\Omega$ in all three cases.