
FINAL EXAM Spring 2010

TFY4235 Computational Physics

This exam is published on Saturday, May 29, 2010 at 09:00 hours. The solutions should be

mailed to me at Alex.Hansen@ntnu.no on Tuesday, June 1 at 23:00 hours at the latest.

Those who have other exams during this interval and who have informed me of this on

beforehand have until Wednesday, June 2 at 23:00 hours to send me the report. The

reports should be in PDF format.

There are no constraints on any aids you may want to use in connection with this exam,

including discussing it with anybody. But, the report you will have to write yourself. Please

attach your programs as appendices to the report. The report may be written in either

Norwegian (either variation) or in English. Please use name rather than candidate number

on the report.

The topic of this exam is anomalous diffusion. Before going into what is anomalous

diffusion, we need to describe normal diffusion. Diffusion is the process of macroscopic

spreading due to microscopic wiggling. In the case of molecular diffusion, a substance

spreads due to the thermal motion of its molcules.

The most common way to model diffusion is through the random walk model. This

comes in two versions, the continuous random walk and the discrete random walk. We will

in the following describe the latter.

The connection between the random walker model and diffusion is that by averaging

over an ensemble of independent random walkers, we essentially look upon the ensemble

as a diffusing cloud consisting of such walkers.

Imagine a chain of nodes i−1, i, i+1 and so on. Each link separating two neighboring

nodes has a length ξ which we set equal to 1. A random walker moves among the nodes

on the chain. Each step it takes has unit length and the step is either in the positive or

negative direction, chosen at random. Each step is instantaneous but there is a waiting

time τ between each. We set τ = 1. Hence, time is then simply measured in terms of the

number of steps n that the random walker has performed.

We now assume that the random walker is at node i at time n. This we denote in. If

ηk is a random sequence of +1 and −1, we have that

in =
n
∑

k=0

ηk , (1)
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when we assume that i0 = 0. If we repeat such random walks many times, we may average

over them. For example, the average position of the random walkers after n steps is

〈in〉 =

n
∑

k=0

〈ηk〉 = 0 , (2)

since the average sequence ηk is unbiased, i.e., 〈ηk〉 = 0. Eq. (2) is a reflection of the

random walker is equally likely to walk in either direction so that the average must be

zero. In order to determine how far the random walker has moved away from the initial

position i0 = 0 at time n irrespective of direction, the root-mean-square distance (RMS)

rn is calculated,

r2
n ≡ 〈i2n〉 = 〈

(

n
∑

k=0

ηk

)(

n
∑

l=0

ηl

)

〉 =

(

n
∑

k=0

)(

n
∑

l=0

)

〈ηkηl〉 =

n
∑

k=0

〈η2
k〉 = n , (3)

since 〈ηkηl〉 = δk,l, where δk,l is unity if k = l and otherwise zero. Hence, we have that

rn = n1/2 . (4)

Eq. (4) is the result that essentially defines normal diffusion: position evolves as the

square root of time.

We generalize Eq. (4) to read

rn ∼ n1/dw , (5)

where the symbol “∼” implies “asymptotically equal to,” i.e., an expression which is ap-

proached as n → ∞. The exponent dw is the diffusion exponent and when dw 6= 2, we

have anomalous diffusion. When dw = 2, we have normal diffusion.

Anomalous diffusion has been keenly studied since the 1980ies. The interest in the

phenomenon is today increasing. At the NTNU Physics Department there are at least

two groups working on problems related to anomalous diffusion: The Fossum group who

studies the phenomenon experimentally in connection with water intercalation in clay and

Hansen and Skagerstam who study the phenomenon in general and in connection with the

flow of capillary films.

There seem to be several mechanisms that lead to anomalous diffusion. We will look

at one of them, namely when the space in which the diffusion process occurs has dead ends

(as in a labyrinth) which lead to the random walkers getting lost in them for time intervals

that follow a power law distribution.

A particularly simple model of such a space is the comb structure. Such a structure

is shown in Fig. 1 of Havlin et al. Phys. Rev. A, 36, 1403 (1987). If we start with the

one-dimensional chain we discussed in connection with the random walk above, we now
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imagine that at each node along the chain — from now on refered to as the backbone —

there is connected a side chain of length (measured in number of nodes it consists of) L

drawn from the cumulative probability which for large values of L behaves as

P (L) = 1 − L−γ , (6)

where γ is positive. We may implement this distribution in practice by generating a random

number ρ on the unit interval and then set L = [ρ−1/γ]int−1, where [· · ·]int means “integer

part.”

The random walker walks along the backbone and on the side chains. If the walker

happens to be at node i on the backbone it may with probability 1/3 either move to node

i − 1 on the backbone, node i + 1 on the backbone or to the first node on the side chain.

Once in the side chain, say at node j, it may move to node j − 1 or j + 1 with equal

probability. If it is positioned at the last node of the side chain, node L, it will with

probability one move to node L − 1.

The position of the random walker is thus characterized by the coordinate (i, j) where

i refers to the node along the backbone that has attached to it the side chain containing

the random walker and j is the node along that side chain where is the random walker. If

the random walker is at (i, 0), it sits at node i on the backbone. The number of nodes on

the chain attached to backbone node i is L(i).

In the paper by Havlin et al. the authors use a mean field theory to calculate the

motion of the random walker along the backbone. That is, they determine the RMS value

of the i component of the random walker (in, jn) as a function of time, n. They find

rn = 〈i2n〉
1/2 ∼ n1/dw , (7)

where

dw =

{

4

1+γ
, 0 < γ < 1,

2, γ ≥ 1.
(8)

These correspond to Eqs. (8) and (9) in Havlin et al.1

Are Eqs. (7) and (8) above correct? Generate an ensemble of combs and random

walkers along these combs and test the claim of Havlin et al. As far as I can see from the

literature, they remain numerically untested. Good luck!

1 Note that there is a misprint in Eq. (8) in Havlin et al.
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