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NTNU Institutt for fysikk

Contact during the exam:
Professor Ingve Simonsen
Telephone: 9 34 17 or 470 76 416

Exam in TFY4275 CLASSICAL TRANSPORT THEORY
Thursday May 22, 2008

09:00–13:00

Allowed help: Alternativ D
Authorized calculator and mathematical formula book

This problem set consists of 4 pages, plus an Appendix of one page.

Problem 1. Anomalous diffusion
a) Consider a particle undergoing (symmetric) diffusion in one-dimension (for simplicity).

How will the mean square displacement,
〈
x2

〉
, scale with time, t, for this process (no

derivation is needed), and how will it depend on the diffusion constant D?

b) Define what is meant by the term anomalous diffusion. Anomalous diffusion can be
classified into sub- and super-diffusion. Define them, and specify if they are Markovian
or non-Markovian. What may the physical origin in the two cases be for the deviation
from ordinary diffusion?

c) Consider a (symmetric) Lévy distribution Lα(x) of tail exponent 0 < α < 2 that
asymptotically scales like (when x→∞)

Lα(x) ∼ x−(α+1).

What is the condition α has to satisfy in order to ensure that the moment
〈
|x|δ

〉
is

finite. How would your answer change if p(x) was not a (symmetric) Lévy distribution,
but, however, still asymptotically scaled like p(x) ∼ x−(α+1)? In this latter case, what
will happen if α ≥ 2?

d) Assume that a particle’s movement is well described by the continuous time random
walk model, where the joint probability ψ(x, t) for jump sizes (x) and waiting times (t)
is separable, ψ(x, t) = λ(x)w(t), with λ(x) and w(t) being the marginal jump size and
waiting time distributions, respectively.

Assume that these marginal distributions asymptotically scale like power laws, i.e.

λ(x) ∼ |x|−(µ+1)

and
w(t) ∼ t−(γ+1)
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where µ > 0 and γ > 0.

In each of the following cases specify if the resulting continuous time random walk
process corresponds to i) normal (ordinary) diffusion; ii) sub-diffusion; and/or iii) super-
diffusion (justify your answer in each case):

1) µ = 4; γ = 2

2) µ = 5/2; γ = 1

3) µ = 1; γ = 1/2

4) µ = 7/3; γ = 3/2

5) µ = 3/2; γ = 3/2

6) µ = 2; γ = 3/2

Problem 2. Non-isotropic Random Walk
We will now study a random walk model somewhat different from the one presented in the
lectures. Let p+ be the probability for making a step to the right; p− the probability for a
step to the left; and 1− p−− p+ for not moving at all. Moreover, let ∆x denote the constant
jump size. When p+ 6= p− the walker is non-isotropic (or asymmetric). Such an asymmetry
can be physically realized due to e.g. an external force, like a diffusing particle on an inclined
plane.
Note that the random walk model presented in the lectures corresponds to the special case
of p+ = p− = 1/2.

a) Write down an expression for the jump size probability distribution function (PDF),
p1(ξ), assuming the length of each non-vanishing jump to have a constant length ∆x > 0.
Calculate the corresponding characteristic function p̂1(k) = 〈exp(ikξ)〉.

b) Obtain the average jump size 〈ξ〉 as well as the average drift velocity of the walker when
the time interval between consecutive jumps is ∆t. What is the maximum possible
drift velocity? Make a sketch of one realization of the random walker for the cases i)
p+ = p−; ii) p+ > p−; and iii) p+ < p−.

[Comment: The distribution of the walker’s position after N time steps can be obtained
as the inverse Fourier transform of [p̂1(k)]

N . We will not follow this route here since
the expressions become cumbersome in general. Instead an alternative approach will be
followed below.]

c) Let P (x, t) denote the probability for the walker being at (discrete) position x = i∆x
(i = 0,±1,±2, . . .) at (discrete) time t = j∆t (j = 0, 1, 2, . . .). Make a sketch of the
in/out-flow of probability into position x, during the transition from t to t + ∆t. Use
this to show that the conservation of probability implies

P (x, t+ ∆t) = P (x, t) + p+ [P (x−∆x, t)− P (x, t)] + p− [P (x+ ∆x, t)− P (x, t)] .
(1)

d) Introduce the (jump) rates (probability per unit time) defined by r± = p±/∆t where
∆t is the constant time-interval between two consecutive jumps. Take the continuous
time limit, ∆t→ 0+, of Eq. (1). What is this equation called?
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e) We will now continue by taking the continuous space limit of the equation from the
previous sub-problem. In this case P (x, t) may be understood as the probability for
finding the particle in an interval of length ∆x about x. Introducing the probability
density function (PDF) f(x, t), so that P (x, t) = f(x, t)∆x and show that it satisfies
the equation

∂tf(x, t) = −ν∂xf(x, t) +D∂2
xf(x, t). (2)

What is this equation called? Obtain the expressions for the constants ν and D, and
express them in terms of p±, ∆x and ∆t. Obtain the limiting expressions for ν and D
in the special case that p+ = p− = 1/2. Is the result reasonable?

[Comment: Even if we use a continuous representation of space and time, the physical
nature of the problem implies that ∆x and ∆t are finite, of the order of the mean free
path and mean free time, respectively]

f) What is the implication of the ν-term in Eq. (2) when ν 6= 0? Use this to argue why
the solution of Eq. (2) is

f(x, t) =
1√

4πDt
exp

(
−(x− x0 − νt)2

4Dt

)
, (3)

given the initial condition f(x, t = 0) = δ(x− x0).

g) Derive expressions for 〈x(t)〉 and
〈
x2(t)

〉
as well as the standard deviation, σx(t), of the

spacial coordinate. Assume that the walker starts off from x = x0 at t = 0. How is this
latter result influenced by potential asymmetries, i.e. of p+ 6= p−?

Problem 3. Ion diffusion; Electro-chemistry
Consider an electrolyte consisting of positive and negative ions, i.e. charged particles in
solution. They have charges q± = ±e, concentrations c±(x), and diffusion constants D±,
respectively. Einsteins relation connects D± to the mobility of the ions, µ±, via the relation
µ± = D±/kBT where kB is Boltzmann’s constant and T the absolute temperature of the
solvent.
To treat the electrical forces acting on a given ion from all the surrounding ions is demanding.
We will instead work within the mean field approximation where each ion only “feels” an
average electric force,

F±(x) = −q±
dφ(x)
dx

= ∓edφ(x)
dx

,

where φ(x) is the (time independent) electrostatic potential at position x (due to the sur-
rounding ions). Note that within this approximation each ion moves independently! Hence,
the concentrations, c±(x), will satisfy the Fokker-Planck equation (recall that µ±F±(x) is the
drift velocity term)

∂tc±(x) = −∂x [µ±F±(x)c±(x)] +D±∂
2
xc±(x). (4)

In electro-chemistry this equation is also known as the Nernst-Planck equation.
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The electrostatic potential satisfies the Poisson’s equation

−εd
2φ(x)
dx2

= ρ(x) = e [c+(x)− c−(x)]

where ε is the dielectric function of the solvent (e.g. water), and ρ(x) denotes the charge
density at position x.
An (uncharged) wall is placed at x = 0 and the solvent fills the region x > 0. The two ion
concentrations are initially equal and independent of position, i.e. c±(x) = c0.

a) Now at t = 0, the electrical potential of the wall is reduced (from zero) and kept at
the constant negative level φ(0) = −φ0 where φ0 > 0 is a constant. Describe in words
what will happen to the ions close to the wall shortly after the potential is “turned”
on at t = 0? What will happen for long times? What is the boundary condition for
c±(x = ∞)?

b) We will now address the equilibrium (stationary) concentration c±(x). What is the
equation satisfied by c±(x) in this case, and show that its solution is

c±(x) = c0 exp
(
∓eφ(x)
kBT

)
.

c) Show that the electrical potential satisfies the following non-linear equation (know as
the Poisson-Boltzmann equation)

ε
d2φ(x)
dx2

= 2c0e sinh
(
eφ(x)
kBT

)
. (5)

This equation can be solved analytically, but we will not do so here.

d) Linearize Eq. (5) and show that the (linearized) electrical potential can be written as
(when you impose the appropriate boundary conditions):

φ(x) = −φ0e
−x/λ.

What is the expression for λ?

e) Obtain an expression for the equivalent (linearized) charge density ρ(x) and make a
sketch of this function. Explain why λ is called the (Debye) “screening length”?



Exam in TFY4275 Classical Transport Theory, 22. 05. 2008 Appendix, page 1 of 1

Mathematics:

• The Fourier Transform:
f̂(k) =

∫ ∞

−∞
dx f(x)e−ikx

f(x) =
∫ ∞

−∞

dk

2π
f̂(k)eikx

• The Lévy distribution
L̂α(k) = exp(−a|k|α)

• Sin hyperbolicus

sinh(x) =
ex − e−x

2

• Taylor expansion

f(x+ δ) ' f(x) + δf ′(x) +
δ2

2!
f ′′(x) + . . .

sinh(x) ' x+
x3

3!
+O(x5)

• Gaussin integrals∫ ∞

−∞
dx e−(ax2+2bx+c) =

√
π

a
exp

(
b2 − ac

a

)
, a > 0

∫ ∞

−∞
dx x e−(ax2+2bx+c) =

−b
a

√
π

a
exp

(
b2 − ac

a

)
, a > 0∫ ∞

−∞
dx x2 e−(ax2+2bx+c) =

a+ 2b2

2a2

√
π

a
exp

(
b2 − ac

a

)
, a > 0


