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NORGES TEKNISK-
NATURVITENSKAPELIGE UNIVERSITET
INSTITUTT FOR FYSIKK

Contact during the exam:
Jon Andreas Støvneng
Phone: 73 59 36 63 / 45 45 55 33

EXAM
TFY4340 MESOSCOPIC PHYSICS
Wednesday May 12 2010, 0900 - 1300

English

Remedies: C

• K. Rottmann: Mathematical formulae

• Approved calculator with empty memory (Citizen SR-270X, HP30S, or similar).

Pages 2 – 6: Questions 1 – 3. The three questions are relatively unrelated and may be an-
swered in any order. Also, many of the subquestions within a given question may be answered
independently from the others.

Notation: Vectors are given in bold italic. Unit vectors are given with a hat above the symbol.

Some constants:
Electron mass: m = 9.1 · 10−31 kg. Elementary charge: e = 1.6 · 10−19 C.
Boltzmann constant: kB = 1.38 · 10−23 J/K. Planck constant: h̄ = h/2π = 1.05 · 10−34 Js.

The grades will be available no later than May 28.
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QUESTION 1
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The figure above shows the energy band characteristics at the Γ–point (k = 0) in the two semi-
conductors Al0.3Ga0.7As and GaAs, with bandgaps and conduction and valence band offsets in
the unit eV.

An interface is formed between (uniformly) n–doped Al0.3Ga0.7As and undoped (”intrinsic”)
GaAs. We assume that the Fermi level (or: chemical potential) µ in bulk n–Al0.3Ga0.7As lies
0.13 eV below the conduction band edge EC .

a) Make a sketch of the resulting energy band diagram near the interface when equilibrium has
been established. Explain briefly the difference between your figure and the figure given above.

b) Concerning the properties of the two–dimensional electron gas (2DEG) that is now formed
in GaAs next to the interface, what would be the benefit of introducing an undoped layer of
Al0.3Ga0.7As between n–Al0.3Ga0.7As and GaAs?

Let z = 0 denote the location of the interface. To a first approximation, the conduction band
edge may, in the vicinity of the interface, be described by the potential V (z) = Fz for z > 0
and V (z) = ∞ for z < 0. Here, F is a constant. In the xy–plane, the electrons move essentially
as free particles, with kinetic energy h̄2k2/2m∗, and effective mass m∗ = m∗(GaAs) = 0.067m
due to the periodic potential felt by the electrons. The total energy of the two–dimensional
(2D) subbands is therefore

En(k) = En +
h̄2k2

2m∗
, n = 1, 2, 3, . . . ,

with
k = kxx̂ + kyŷ.

Here, zero energy is chosen at the conduction band edge in GaAs when z → 0, i.e., at the
bottom of the triangular potential well. The corresponding wave functions are

Ψ
nk

(r) = Φn(z)u
k

(x, y)ei(kxx+kyy),

with the (x, y)–dependent part on Bloch form. The Schrödinger equation is now separable.
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c) Show that the resulting equation for Φn may be written in dimensionless form,

d2Φn

dξ2
− ξΦn = −ẼΦn,

with ξ = κz, Ẽ = Eκ/F , and κ = (2m∗F/h̄2)1/3.

d) The (dimensionless) eigenvalues of this equation are approximately Ẽ1 = 2.34, Ẽ2 = 4.09,
Ẽ3 = 5.52, . . .. Show that with F = 10 meV/nm, and a Fermi level µ = 0.10 eV, only the
lowest 2D subband, E1(k), will be occupied by electrons.

The density of states (DOS), i.e., the number of available quantum states pr unit energy, D2(E),
is independent of the energy E in a 2DEG. Let us prove this statement.

e) Assume that your sample is of size L × L in the xy–plane. Then, taking into account the
spin degeneracy of two and the absence of valley degeneracy (i.e., gS = 2, gV = 1) near the
Γ–point, argue that the density of states in (the 2D) k–space is

D2(k) =
L2

2π2
.

f) Further, argue that the number of states N2(k) with wave number less than k (in absolute
value) is then

N2(k) =
(kL)2

2π
.

g) Use this result to write down N2(E) in ”energy space”, assuming E = 0 at the bottom of
the 2D subband. Finally, show that

D2(E) =
m∗L2

πh̄2 ,

a constant, as advertised.

Next, we will consider electron transport through a 1D channel connecting a 2D source (S) at
chemical potential (Fermi level) µ1 and a 2D drain (D) at chemical potential µ2 (µ2 < µ1):

µ2µ1

S 1D channel D

y

x

The electric current from S to D, due to transverse subband j in the 1D channel, is

I+
j = (−e)

∫ µ1

Et
j

dE ρ+
j (E) vj(E) Tj(E).
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Here, ρ+
j (E) is the 1D DOS pr unit length for states with positive group velocity vj(E) along

the 1D channel, and Tj(E) is the probability of being transmitted through the 1D channel in
subband j with energy E. We assume low temperatures.

h) Verify that this expression for I+
j has the correct unit (A).

i) From this expression for I+
j , and an analogous expression for the current from D to S, I−

j ,
derive the Landauer formula for the total conductance G = I/V of the 1D channel,

G =
2e2

h

∑
j

Tj(EF ).

Here, I is the total net current when a voltage V is applied between S and D, and we are
assuming linear response, i.e., µ1 ≃ µ2 ≃ EF . The 1D DOS is D1(E) =

√
2m∗L/πh̄

√
E for a

system of length L.

The figure below is copied from the paper Quantized Conductance of Point Contacts in a

Two–Dimensional Electron Gas, by B. J. van Wees et al (Phys Rev Lett 60, 848 (1988)):

The figure shows the measured conductance of a narrow 1D channel (actually, a so–called ”point
contact”), where the width W of the channel is controlled by the voltage VG on a split–gate elec-
trode. The 2DEG ”lives” in GaAs, so the effective electron mass is m∗ = 0.067m, and the 2D
density of electrons is n2 = 3.56·1015 m−2. Only the lowest 2D subband is occupied by electrons.

j) Use this information to calculate the Fermi level EF in the 2DEG.
(Hint: Use the result of 1g).)

k) Assume that the confining potential that defines the 1D channel is a potential box of width
W and with hard walls (i.e. V = ∞ outside the 1D channel). With these assumptions, what is
the width W of the 1D channel when the gate voltage is VG = −1.5 V?
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QUESTION 2

Consider the 5–terminal device shown in the figure below, with ideal contacts, and with a
geometrical constriction of width w defined by a split–gate technique. We ignore tunneling and
impurity scattering.

2

1 Ww

3

4

5

Bx

A uniform perpendicular magnetic field B is pointing into the plane and causes the formation
of N edge states (at each edge) in the wide regions of the device (width W ). Inside the
constriction, only n edge states (at each edge) are present at the Fermi level. Hence, we assume
that n edge states are transmitted through the constriction with probability equal to one,
whereas the remaining N −n edge states do not enter the constriction. The Büttiker–Landauer
equations,

Iα =
∑
β 6=α

Gαβ (Vα − Vβ) ,

with conductances

Gαβ =
2e2

h
Tαβ,

relate the current in terminal α to the potentials at the various terminals. Here, Tαβ denotes
the ”transmission sum” from terminal β to terminal α. A small voltage is applied between
terminals 1 and 4, resulting in a net current I flowing from terminal 1 to terminal 4 (i.e.,
I1 = −I4 = I). Terminals 2, 3, and 5 are used as voltage probes.

a) Write down the dimensionless 5 × 5 conductance matrix (or ”transmission matrix”) with
matrix elements Tαβ = hGαβ/2e2.

b) Find the resistances R14,23, R14,25, R14,35, and R14,14. (Notation: Rαβ,κη = (Vκ − Vη)/I,
I = Iα = −Iβ, Iκ = Iη = 0.) For convenience, choose V4 = 0.
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QUESTION 3

The figure below is copied from the paper Weak Localization in Bilayer Graphene, by R. B.
Gorbachev et al (Phys Rev Lett 98, 176805 (2007)):

a) Describe briefly, in a sentence or two, the physics behind ”weak localization”.

b) Why does the conductivity increase when a weak magnetic field is applied to the sample?

c) Why does the effect vanish with increasing temperature (as shown in the figure)?


