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PROBLEM 1

(a) The corresponding force to this potential is given by F =−∇V , such that F = F ẑ. This is a constant force in the z-direction,
such that the particle will be accelerated from rest in the positive z-direction.

(b) The Lagrangian is given by L = mż2/2+Fz. The extremal values of the action

I =
∫ t2

t1
L(q, q̇, t)dt (1)

are provided by the Lagrange-equation. This gives us mz̈ = F . Inserting our ansatz for z(t), we obtain C = F/(2m). From the
conditions z(t = 0) = 0 and z(t = t0) = a, we find A = 0 and B = [a−Ft2

0/(2m)]/t0.

(c) The variation of the action in this case reads:
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t1
dt
[
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(2)

Now use that δq̇ = d
dt δq and similarly for q̈. We then obtain by means of a partial integration:
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. (3)

The two last terms vanish since there is no variation at the end-points t1 and t2. Apply then one more partial integration to the
third term in the above equation to arrive at the final result.

(d) The corresponding equation of motion reads mq̈/2+ kq = 0, which describes a harmonic oscillator.

(e) If a Lagrangian has a continuous symmetry, for instance invariance under time-translation t → t +∆t or space-translation
r→ r+∆r, it also has a belonging conserved quantity. In the specific example given in the exam, the Lagrangian has no explicit
dependence on time and hence energy is conserved. The Lagrangian is, however, not invariant under a space-translation, and
hence the total momentum cannot be conserved.



PROBLEM 2

(a) The corresponding potential to the written force reads V =−k/r, and so the Lagrangian reads L = (m/2)(ṙ2 + r2θ̇2)+ k/r.
It follows that θ is a cyclic coordinate, such that the canonical momentum pθ = mr2θ̇ is a conserved quantity. This may be
identified as the angular momentum of the particle since we have a complete radial symmetry in the problem, i.e. l = mr2θ̇.
Using this, we obtain the following Lagrange-equation for the coordinate r:

mr̈ =−k/r2 + l2/(mr3). (4)

It follows from the expression for energy E = T +V that the effective potential may then be written as V ′(r) =V (r)+ l2/(2mr2).
The discussion of the qualitative nature of the motion of this particle depending on energy E and angular momentum l is given
in the compendium on p. 38-39.

(b) The differential scattering cross section expresses the ratio of the number of particles scattered into a specific part of space
per time and the intensity of the incident particles. The total scattering cross section is a measure for the effective scattering area
that incident particles will be subject to.

(c) This means that any incident particles towards a Coulomb-potential will be scattered, regardless of how large their impact
parameter is.

(d) The effective scattering cross section will be πa2. The reason for this is that particles incident within this area will hit the
sphere and be scattered, whereas particles outside of this area will remain unaffected.

(e) The system is in equilibrium when all the generalized forces vanish, Qi = − ∂V
∂qi

∣∣∣
0
= 0, where the subscript 0 indicates the

equilibrium values of the coordinates {qi}, in effect q1 = q0,1, q2 = q0,2, . . .. Upon a slight perturbation of the coordinates from
their equilibrium values, the system can either undergo a bound or unbound movement depending on whether the equilibrium is
stable or unstable. For a stable equilibrium, the vanishing of the generalized forces indicate that the potential is at a minimum.
For an unstable equilibrium, the vanishing of the generalized forces indicate that the potential is at a maximum.



PROBLEM 3

(a) In the context of particle collisions, the threshold energy is the minimum kinetic energy required to enable a reaction.

(b) The final state with new particles produced will have the lowest energy if all particles are at rest. In order to satisfy conserva-
tion of momentum, this means that the total momentum of the original colliding particles must be zero. Hence, the collision must
take place in the center-of-mass system. If the original particles have a finite total momentum, the produced particles must also
have a finite total momentum to satisfy conservation of momentum, which means that extra kinetic energy is needed originally
to give the produced particles their necessary momentum.

(c) Conservation of energy and momentum is expressed via conservation of 4-momemtum pµ. We also know that the product
pµ pµ is a Lorentz-invariant, in effect it’s the same in any inertial system. Let pµ denote the total 4-momentum of the system
before the collision whereas p′µ denotes the total 4-momentum after the collision. We may define the equivalent mass of the
system M as:

pµ pµ = p′µ p′µ =−M2c2. (5)

In general, this mass is not equal to the sum of the masses before and after the collision, respectively. However, if all the particles
after the collision are at rest, there is no kinetic energy and in this case we have M = Mtot where Mtot is the total rest mass of the
particles produced in the collision.

Let’s now analyze the product pµ pµ first in the system where one particle initially is at rest and then in the COM system. In the
first case, we obtain:

pµ pµ =−m2
1c2−m2

2c2 +2(p1 ·p2−E1E2/c2). (6)

Now use that one particle is at rest (set for instance p2 = 0) and that the kinetic energy of the other particle (for instance particle
1) then reads K1 = E1−m1c2. The above equation can then be rewritten as:

M2c4 = (m1 +m2)
2c4 +2m2c2K1 (7)

which gives us the result for the total kinetic energy of the system before the collision:

K1 =
M2c4− (m1 +m2)

2c4

2m2c2 . (8)

Consider now the COM system. Since the total momentum before the collision is now zero, we obtain from the definition of pµ:

M2c2 = E2
before/c2 (9)

The total energy before the collision is the sum of the kinetic and rest energies of the two particles, in effect Ebefore = K1 +K2 +
m1c2 +m2c2. We can then identify the result for the total kinetic energy of the system before the collision:

K1 +K2 = Mc2− (m1 +m2)c2 (10)

In order to now say something about the threshold energies in the two scenarios above, we use the fact that the threshold energy
corresponds to the case where the final particles are at rest after the collision in the COM-system. In this case, we have M = Mtot.
This also holds in the system where only one of the particles was at rest initially, since pµ pµ =−M2c2 is an invariant. According
to the assumption written in the problem text, we may write Mtot = k(m1 +m2).

The remaining part of the problem is now to prove that the threshold energy in the COM system is lower than in the system
where one particle was initially at rest. Using Eqs. (8) and (10), we must check if

Mtotc2− (m1 +m2)c2 ≤ M2
totc

4− (m1 +m2)
2c4

2m2c2 (11)

holds. Inserting Mtot = k(m1 +m2) gives us the inequality:

m2
1(k

2−1)+2m1m2(k2− k)+m2
2(k

2−2k+1)≥ 0. (12)

Since the masses {m1,m2} must be larger than zero and we know that k ≥ 1, the first two terms are guaranteed to be positive.
The last term is also guaranteed to be positive since k2−2k+1≥ 0. Therefore, the entire left-hand side of the equation must be
positive and the inquality is satisfied which proves our statement.
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PROBLEM 4

(a) The key here is to use a proper coordinate system for (B) and (C) so that we can use the Lorentz-transformation listed
in the Supplementary Information. Let’s first consider situation (B) and choose the velocity direction to be the z-axis. In
that case, we have E = −E ẑ for the observer in S [or equivalently for the capacitor’s reference system in (B)] since the field
points from positive to negative charge. The corresponding electric potential is then φ = Ez such that the 4-vector Aµ becomes
Aµ = (0, iE/c). Using the general form for Fµν, we thus obtain only two non-zero elements for the electromagnetic field tensor:
F34 =−F43 = iE/c.

We are now in a position to evaluate the field seen by the stationary observer in S . The Lorentz transformation gives us:

F ′µν = (Lµ3Lν4−Lµ4Lν3)F34. (13)

We only obtain two non-zero elements for F ′µν as well, namely F ′34 = F34 and F ′43 = F43. Therefore, the electric field seen by the
observer in (B) is the same as in (A). This reflects the fact that the component of the electric field along the velocity direction
remains invariant under a Lorentz transformation.

We now perform the equivalent analysis for situation (C). In this case, it is useful to choose the coordinate system so that the
velocity direction again is the z-axis. The electric field seen from the capacitor’s reference system is then E = Ex̂. Performing
the same analysis as above, we find that

F ′13 = iβγF14, F ′14 = γF14. (14)

Considering the general expression for Fµν, we can infer that the above equations are equivalent to:

B′y =−βγE/c, E ′x = γEx. (15)

In effect, a stationary observer in S will see a modified electric field and additionally a magnetic field along the y-axis.

(b) In situation (B), there is a contraction of the distance d between the plates, but no contraction of the area of the plates since
the velocity is perpendicular to the plates. Since the electric field is independent of d, it remains invariant. However, in situation
(C), the velocity is parallell with the plates, so that a stationary observer will see a contraction of the area of the plates: A→ A/γ.
Inserting this into the expression for the electric field, we find that E→ γE, which is precisely the result obtained in (a).

(c) Exactly this derivation is shown in the compendium in p. 109.


