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The exam consists of 4 problems. Each problem counts for in total 25% of the total weight of the exam, but each sub-exercise
(a), (b), etc. does not necessarily count equally.

Read each problem carefully in order to avoid unnecessary mistakes.

Allowed material to use at exam: C.

• Approved, simple calculator.

• K. Rottmann: Matematisk formelsamling.

• K. Rottmann: Mathematische Formelsammlung. Barnett & Cronin: Mathematical Formulae.

Also consider the Supplementary Material on the last page of this exam.



PROBLEM 1

(a) Two point masses m are joined by a rigid weightless rod of length l, the center of which is constrained to move on a circle of
radius r0. Assume that the masses are also restricted to move in the plane defined by the motion of the center of the rod. Derive
the total kinetic energy of this system expressed in terms of two generalized coordinates.

(b) Define in words, and in detail, what the differential scattering cross section gives information about physically. Also define
in words the difference between the differential scattering cross section and the total scattering cross section.

(c) Explain in detail the relation between symmetries of the Lagrangian describing a given system and the possibility of having
conserved quantities. Give at least three examples of important symmetries a Lagrangian can have and the corresponding
conserved physical quantities.

(d) Describe how frictional forces may be included in Lagrange’s equations via the Rayleigh dissipation function and provide
the typical form for this function.

(e) Define in words the concept of ”threshold energy” in the context of particle collisions.

(f) Explain in detail the meaning of the following concepts in relativity:

• Length contraction.

• Time dilation.

Finally, explain in detail the concept of gauge-invariance in the context of electromagnetic fields.



PROBLEM 2

(a) A particle of mass m is restricted to move under the influence of gravity, but without friction, on the inside of a paraboloid
described by the equation z = αr2. Here, r is the radial vector in the xy-plane. Find the one-dimensional problem equivalent to
its motion, i.e. write down the corresponding Lagrangian and its equations of motion. Assume now that the particle moves along
a circle, and find an analytical expression for the angular velocity of this circular motion.

(b) Newton’s second law may be written as ṗ = f (r)r/r for a general central force. Assume that f (r) is proportional to r−2, and
show that the Laplace-Runge-Lenz vector A is conserved. This vector is defined as:

A = p×L−mkr/r (1)

where L is the angular momentum, m is the mass, and k is the constant of proportionality between f (r) and r−2, i.e. f (r) = kr−2.

(c) Consider the operator equation relating the time-change of a vector as seen in a fixed, stationary system and as seen in a
(body) system rotating with angular velocity ω: ( d

dt

)
space

=
( d

dt

)
body

+ω× (2)

Assume that the origo of the two reference-systems coincide. Use this equation on the position vector r to an object with mass
m in order to derive an expression for the effective force experienced by this object in the rotating system expressed with three
ingredients: 1) the force acting on the object as seen from the stationary system, 2) the Coriolis-force, and 3) the centrifugal
force. Identify a concrete analytical expression for the Coriolis and centrifugal force.



PROBLEM 3

(a) Consider a rigid body rotating around its own center of mass with an angular velocity ω. Show that the total angular
momentum of the rigid body may be written as:

L = Iω (3)

where I is the moment of inertia matrix, and write down a general expression for the components Ii j of this matrix.

(b) Consider the CO2 molecule as a linear, tri-atomic molecule positioned along the x-axis. Assume that the masses of the
oxygen atoms are m while the mass of the carbon atom is M. Moreover, assume that the distance between the C and O atoms in
equilibrium is d. Consider now a situation where we perturb slightly the equilibrium situation such that the position of the atoms
deviate from their equilibrium positions x0i, where i = 1,2,3 refers to the right O, middle C, and left O atoms, respectively. The
deviations may then be quantified as ηi = xi− x0i.

Write down the Lagrangian of the system expressed in terms of ηi. Assume now that the center of mass is at rest and introduce
the so-called normal coordinates Qa = η1 +η3 and Qs = η1−η3. Use this information to write the Lagrange-equations for the
normal coordinates and identify the belonging eigenfrequencies ωa and ωs.

If we relaxed our assumption about a center of mass at rest, we would find one more possible solution for the eigenfrequency ω.
Which one? Discuss the physical meaning of its value.

(c) A charged particle is constrained to move in the xy-plane under the influence of a central force potential V = 1
2 kr2, which

is non-electromagnetic, in addition to a constant magnetic field B perpendicular to the plane. In this case, the magnetic vector
potential may be written A = 1

2 B× r. Assume that the Lagrangian of the system may be written as:

L =
m
2
(ẋ2 + ẏ2)+

q
c
(ẋ ·A)− k

2
(x2 + y2). (4)

Switch to polar coordinates and write down the corresponding Hamilton-Jacobi equation based on this Lagrangian.



PROBLEM 4

(a) A meson of mass mπ at rest disintegrates into a meson of mass mµ and a neutrino of zero mass. Derive an expression for the
kinetic energy of the µ-meson.

(b) A photon may be described clasically as a particle of zero mass possessing nevertheless a momentum h/λ = hν/c, and
therefore a kinetic energy hν, where h is Planck’s constant, c is the speed of light, and ν is the frequency of the photon. Assume
that the photon collides with an electron of mass m at rest and scatters to an angle θ with a new energy hν′. Show that the change
in energy is related to the scattering angle by the formula:

λ
′−λ = 2λc sin2(θ/2), (5)

where λc = h/mc is the Compton wavelength. Also find an expression for the kinetic energy of the electron after the collision.
Consider the special case of θ = 0. How do you interpret the corresponding change in energy and the kinetic energy obtained by
the electron?



Supplementary Information

The regime of validity and the meaning of the symbols below are assumed to be known by the reader.
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xµ = (r, ict),

pµ = (p, iE/c) (8)

Aµ = (A, iφ/c), E =−∇φ−∂A/∂t, B = ∇×A (9)

Fµν =
∂Aν

∂xµ
− ∂Aµ

∂xν

(10)

From the above equations, it follows that the general form of Fµν in a given reference system is:

Fµν =


0 Bz −By −iEx/c
−Bz 0 Bx −iEy/c
By −Bx 0 −iEz/c

iEx/c iEy/c iEz/c 0

 (11)

F ′µν = LµαLνβFαβ. (12)

The Lorentz-transformation matrix for the situation in Fig. 1 is given by:

Lµν =


1 0 0 0
0 1 0 0
0 0 γ iβγ

0 0 −iβγ γ

 (13)

where β = v/c and γ = 1/
√

1−β2.
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FIG. 1: Lorentz-transformation along the z-axis.


