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SIF40AH/DIF4997
Nano-particle and polymer physics I

SOLUTION of EXERCISE 1

Eq. (x.x) refers to version AM11sep02 of lecture notes: “Nano-particle and polymer physics”.
Equations pertinent to this exercise you will find in Eq. (2.45) - (2.54).

A) The Rouse chain consists of N segments (beads) connected by N − 1 segment vectors (springs).
We assume that there are no other forces than the spring force and that the end beads are free. We
also assume that all springs obey Hooke’s law with Hooke’s constant H. Relative to the laboratory
coordinate system the position of bead ν is rν (ν = 1, 2, . . .N), and we define r0 = r1 and rN+1 =
rN . Note that for the one-dimensional chain the coordinates rν are scalars and not vectors.

Newtons law for bead ν reads:

mr̈ν = H · [(rν+1 − rν)− (rν − rν−1)] (1)

Changing coordinate system from the laboratory system to cm-system with origo in the chain of
mass rc =

N
ν=1 rν/N , that is rν = rc +Rν . Eq. (1) transforms to

mR̈ν = H · [(Rν+1 −Rν)− (Rν −Rν−1)] = H · [(Rν+1 − 2Rν) +Rν−1)] , (2)

or on vector form

m
¨
R = −H· ⇒A ·R, where

⇒
A =



1 −1
−1 2 −1

−1 2 −1
. . .

−1 1


. (3)

Note that matrix
⇒
A is not the Rouse matrix. Also note that in this one-dimensional chain the

components of the vector R = [R1, R2, . . . , RN ] are scalars, but for a three-dimensional chain the
components are vectors.

The essence now is to rewrite Eq. (2) to be expressed by the segment vectors Qν = Rν+1−Rν (ν =
1, 2, . . . (N − 1)). From the above defined r0 = r1 and rN+1 = rN follows Q0 = 0 and QN = 0. We
obtain

mQ̈ν = H · [(Qν+1 +Qν−1 − 2Qν)] , (4)

or on vector form

m
¨
Q = −H· ⇒A ·Q, where

⇒
A=



2 −1
−1 2 −1

−1 2 −1
. . .

−1 2


. (5)

Now the (N − 1)× (N − 1)-matrix ⇒A is precisely the Rouse-matrix (see Eq. (2.52)). We have thus
easily obtained the Rouse matrix from Newtons law using the relative coordinates Q.

(The following is not part of the question:) Further analysis shows, where
⇒
B̄ and

⇒
B are as defined

in lecture notes

Q =
⇒
B̄ ·R and R =

⇒
B ·Q (6)

⇒
⇒
B̄ · ⇒B=⇒δ and

⇒
B ·

⇒
B̄=

⇒
δ , (7)

but note that
⇒
B and

⇒
B̄ have different dimensions. Eq. (2) can be expressed

mR̈ν = H(Qν −Qν−1) (8)
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or, by introducing
⇒
B̄

m
¨
R = −H

⇒
B̄
T

·Q. (9)

Comparing with
m
¨
R

(6)
= m

⇒
B ·¨Q (5)

= −H ⇒
B
⇒
A ·Q (10)

we obtain ⇒
B̄
T

=
⇒
B · ⇒A ⇒ ⇒

A=
⇒
B
−1
·
⇒
B̄
T

=
⇒
B̄ ·

⇒
B̄
T

or Aij =
N

ν=1

B̄iνB̄jν . (11)

This is precisely the mathematical definition of the Rouse matrix! It is now trivial to show that the

Rouse matrix
⇒
A and the Kramer matrix

⇒
C are inverse, since

⇒
A · ⇒C= (

⇒
B̄ ·

⇒
B̄
T

) · (⇒B
T

· ⇒B) =
⇒
B̄ · ⇒

B ·
⇒
B̄

T

· ⇒B=
⇒
B̄ · ⇒δ · ⇒B=⇒δ . (12)

B) Let ε = |Q| be the length of each segment. In the limit N →∞ the length L = Nε of the chain
must be kept constant, so ε→ 0. It is thus natural to expand in a series in ε. Coordinate x is used
as space coordinate:

Rν ≡ R(x), Rν±1 ≡ R(x± ε). (13)

Taylor expansion to second order of Eq. (2) yields

mRtt = Hε
2 · Rxx +

2

12
Rxxxx + · · · , (14)

where Rx ≡ ∂R
∂x , Rxx ≡ ∂2R

∂x2 , etc. In the limit ε → 0 we obtain the wave equation of zeroth order
with the wave velocity c given by c2 = Hε2/m.

C1) In the continuous case (N →∞) the eigenvectors of the Rouse matrix are trivial. A vibrating
rod has the quantization properties (standing wave in the rod with fixed endpoints: a whole number
of λ/2 along the rod):

j
λ

2
= L, j = 1, 2, . . . . (15)

The eigenvalues of the matrix
⇒
A are given by

⇒
A ·Q = ajQ. From Eq. (5) and using the continuous

standing wave solution Q ∝ exp{i(ωt− kx)} we obtain
⇒
A Q = −m

H
¨
Q =

m

H
ω2Q. (16)

Further, using the relation c2 = Hε2/m, expressing the wave velocity c = λ ω
2π , using Eq. (15) and

ε = L/N , the eigenvalues aj can be expressed

aj =
m

H
ω2 = ε2

2π

λ

2

=
π2j2

N2
. (17)

This is precisely the same as obtained taking the limit N → ∞ of the eigenvalues of the Rouse
matrix in the discrete case: Holding L constant we obtain for the Rouse eigenvalues:

aj = lim
N→∞

4 · sin2 jπ

2N
= lim

ε→0 4 · sin
2 jπε

2L
=
π2j2 2

L2
=
π2j2

N2
(18)

C2) Now we calculate the eigenvalues in the discrete case (finite N). In place of finding the N
eigenvalues by zeroing the determinant of the equation, we do an alternative approach:

The eigenvalues represent the characteristic resonance modes. At resonance all beads oscillates with
the same frequency ω but different phase. Therefore the general wave function is given by

Qk = fk exp{iωt}, where fk = C exp{ikn}+D exp{−ikn}, (19)

and C and D are constants given by the boundary conditions for Q0 = QN = 0, that is f0 = fN = 0.
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This yields

C +D = 0 (20)

C exp{iNn}+D exp{−iNn} = 0 (21)

Inserting Eq. (19) into Eq. (4) and defining a = m
Hω

2, we find that the function fk must fulfil

fk−1 + fk+1 = (2− a)fk (22)

Using the trial solutions of Eq. (18) in Eq. (22) and D = −C yields
(ei(k−1)n − e−i(k−1)n) + (ei(k+1)n − e−i(k+1)n) = (2− an)(eikn − e−ikn)

eikn(ein + e−in)− e−ikn(ein + e−in) = (2− an)(eikn − e−ikn)
e−in + ein − 2 = an

an = 2− 2 cosn = 4
1− cosn

2
= 4 sin2

n

2
. (23)

Using the boundary condition Eq. (21) we obtain

C exp{−iNn}[exp{2iNn}− 1] = 0

fulfilled only for exp{2iNn} = 1 ⇒ n =
jπ

N
(24)

Conclusion: The eigenvalues of the Rouse matrix fulfills

aj = 4 sin
2 jπ

2N

Comments:

1) Note that the for the contiuous vibration we do not accept dispertion: After disturbing the
system all frequency components will move with the same velocity c = ε H/m. This is not the

case for the discrete case, when the wave velocity equals ω/k and ω2 = H
m sin

2 jπ
2N . The continuous

limit corresponds to limiting to the linear part of the dispertion relation of the rod: We study waves
with wavelengths much larger than the distance ε.

2) You may perhaps not like that the wave velocity c = ε H/m seems to diverge to zero when
ε→ 0. Remember that the mass and the spring constant are given by m = ρε and H = T/ε, where
ρ is mass per length unit and T is the spring constant for the complete spring. From these variables
we obtain c2 = T/ρ, as for a ”macroscopic” spring.

3) Including the next order approximation of the forces, we get for instance

mR̈ν = H · [(Rν+1 −Rν)− (Rν −Rν−1)] +Hε1 · (Rν+1 −Rν)2 − (Rν −Rν−1)2 ,
and in the continuous limit we will get the wave equation (14) plus something. This something
gives a variation about the usual wave solution given by the KdV -equation, Rt+RRx+Rxxx = 0.
This equation is non-linear and has dispertion, and accounts for the socalled soliton solutions. Such
solitons are funny. They keep the asymptotic shape and velocity after a collision with other solitons
(as it is for the solutions of the usual wave solution), something not to be expected of a solution of
a non-linear equation!

4) Both free and constricted boundary conditions yield the same quantization conditions for the
finite chain, and the same eigenvalues of the Rouse matrix. For constricted ends the amplitudes are
zeroat the ends, but for free ends the relative amplitudes are zero at the ends. When additionally
the differential equation is the same for the amplitude and the relative amplitude, we surely obtain
the same quantization conditions. (For periodic boundary conditions it is somewhat different, as
the eigenfrequency has doble degeneration.)
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