SIF40AH/DIF4997 Nano-particle and polymer physics I SOLUTION of EXERCISE 3

Eq. (x.x) refers to version AM11sep02 of lecture notes: "Nano-particle and polymer physics".
A) The segment length $Q=10 \mathrm{~nm}$. Note: $N_{s}=100$ segments means $N=N_{s}+1=101$.
i) Contour length: $\underline{L_{c}}=(N-1) Q=100 \times 10 \mathrm{~nm}=1000 \mathrm{~nm}=\underline{1,0 \mu \mathrm{~m}}$
ii) Average end-to-end vector:

$$
\left\langle\overrightarrow{\boldsymbol{r}}_{e-e}\right\rangle=\int \overrightarrow{\boldsymbol{r}}_{e-e} P_{e q}\left(\overrightarrow{\boldsymbol{r}}_{e-e}\right) \mathrm{d} \overrightarrow{\boldsymbol{r}}_{e-e}
$$

where (Eq. (2.91))

$$
P_{e q}\left(\overrightarrow{\boldsymbol{r}}_{e-e}\right) \mathrm{d} \overrightarrow{\boldsymbol{r}}_{e-e}=\left(\frac{3}{2 \pi(N-1) Q^{2}}\right)^{3 / 2} \exp \left\{-\frac{3 r_{e-e}^{2}}{2(N-1) Q^{2}}\right\} \cdot \mathrm{d} x \mathrm{~d} y \mathrm{~d} z
$$

Because of the symmetry of $P_{e q}$ integration from $-\infty$ to ∞ yields

$$
\underline{\left\langle\overrightarrow{\boldsymbol{r}}_{e-e}\right\rangle=0}
$$

iii) Average end-to-end distance:

$$
\left\langle r_{e-e}\right\rangle=\int_{0}^{\infty} r_{e-e} P_{e q}\left(r_{e-e}\right) \mathrm{d} r_{e-e}
$$

where

$$
P_{e q}\left(r_{e-e}\right) \mathrm{d} r_{e-e}=4 \pi r_{e-e}^{2}\left(\frac{3}{2 \pi(N-1) Q^{2}}\right)^{3 / 2} \exp \left\{-\frac{3 r_{e-e}^{2}}{2(N-1) Q^{2}}\right\} \cdot \mathrm{d} r_{e-e}
$$

From tables:

$$
\int_{0}^{\infty} r^{3} \exp \left\{-\lambda r^{2}\right\}=\lambda^{-2} / 2
$$

which yields

$$
\underline{\left\langle r_{e-e}\right\rangle}=\sqrt{\frac{8}{3 \pi}} \cdot \sqrt{N-1} \cdot Q=\underline{92 \mathrm{~nm}}
$$

iv) Average quadratic end-to-end distance.

$$
\begin{aligned}
\left\langle r_{e-e}^{2}\right\rangle & =\int r_{e-e}^{2} P_{e q}\left(\overrightarrow{\boldsymbol{r}}_{e-e}\right) \mathrm{d} \overrightarrow{\boldsymbol{r}}_{e-e} \\
& =\int r_{e-e}^{2}\left(\frac{3}{2 \pi(N-1) Q^{2}}\right)^{3 / 2} \exp \left\{-\frac{3 r_{e-e}^{2}}{2(N-1) Q^{2}}\right\} \mathrm{d} \overrightarrow{\boldsymbol{r}}_{e-e}
\end{aligned}
$$

With $\mathrm{d} \overrightarrow{\boldsymbol{r}}_{e-e}=4 \pi r_{e-e}^{2} \mathrm{~d} r_{e-e}$ (spherical symmetry) and integration from $r_{e-e}=0$ to ∞ we obtain, using tables:

$$
\left\langle r_{e-e}^{2}\right\rangle=(N-1) Q^{2}=100 \times 10^{2} \mathrm{~nm}^{2}=10000 \mathrm{~nm}^{2} \Rightarrow \underline{\sqrt{\left\langle r_{e-e}^{2}\right\rangle}=100 \mathrm{~nm}}
$$

$\left\langle r_{e-e}^{2}\right\rangle$ can also be calculated alternatively:

$$
\left\langle r_{e-e}^{2}\right\rangle=\Sigma_{i}^{100} \Sigma_{j}^{100}\left\langle\overrightarrow{\boldsymbol{Q}}_{i} \cdot \overrightarrow{\boldsymbol{Q}}_{j}\right\rangle=\Sigma_{i}^{100} \Sigma_{j}^{100} \delta_{i j} \cdot Q^{2}=100 \cdot Q^{2}
$$

v) Maximal stretch ratio:

$$
\frac{L_{c}}{\sqrt{\left\langle r_{e-e}^{2}\right\rangle}}=\frac{1000 \mathrm{~nm}}{100 \mathrm{~nm}}=\underline{10}
$$

vi) Radius of gyration (Eq. (2.147):

$$
\begin{aligned}
\left\langle R_{G}^{2}\right\rangle_{e q}=\frac{N^{2}-1}{6 N} Q^{2}= & \frac{1}{6} \frac{N+1}{N}\left\langle r_{e-e}^{2}\right\rangle_{e q}=\frac{1}{6} \frac{102}{101} 10000 \mathrm{~nm}^{2}=1683 \mathrm{~nm}^{2} \\
& \Rightarrow \sqrt{\left\langle R_{G}^{2}\right\rangle_{e q}}=41 \mathrm{~nm}
\end{aligned}
$$

vi) Spring stiffness (spring constant) when changing the end-to-end distance of the molecule:

$$
\begin{align*}
\left|k_{s}\right| & =\frac{F}{r}_{e-e}=\frac{3 k_{B} T}{(N-1) Q^{2}} \tag{1}\\
& =\frac{3 \times 1.38 \times 10^{-23} \mathrm{Nm} / \mathrm{deg} \times 300 \mathrm{deg}}{100 \times 100 \mathrm{~nm}^{2}}=1.2 \times 10^{-6} \mathrm{~N} / \mathrm{m}
\end{align*}
$$

B)

i) The Helmholz free energy of each spring:

$$
A=U_{1}-T \cdot S=k_{S} / 2 \cdot\left(l-l_{\max } / 2\right)^{2}-0
$$

This yields the average force between end points of the polymer

$$
F=-\frac{\mathrm{d} A}{\mathrm{~d} l}=-k_{S} \cdot\left(l-l_{\max } / 2\right) \quad \text { ie. spring constant }=-\frac{\mathrm{d} F}{\mathrm{~d} l}=\underline{k_{S}}
$$

ii) When the potential equals U_{2} the entropy of the spring determines the spring stiffness. The entropy $S(L)$ as function of the end-to-end distance L is calculated through $A(L)=U_{1}-T \cdot S(L)=$ $0-T \cdot S(L)$
The function $P_{e q}(L)$ is the probability to find the end-to-end distance of the chain, L, within a certain length:

$$
P_{e q}(L)=\frac{\int \cdots \int_{0}^{l_{\max }} \delta\left(L-\sum_{j=1}^{N_{s}} x_{j}\right) \mathrm{d}^{N_{s}} x}{\int \cdots \int_{0}^{l_{\max }} \mathrm{d}^{N_{s}} x}
$$

where $\delta(y)$ is Diracs delta function and $N_{s}=$ no. of segments $=100$. The delta function is on
integral form expressed

$$
\delta(y)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \exp \{i y s\} \mathrm{d} s
$$

Inserted in expression for $P_{e q}$ this yields

$$
\begin{aligned}
P_{e q}(L) & =\frac{1}{l_{\max }^{N_{s}}} \int \cdots \int_{0}^{l_{\max }} \frac{1}{2 \pi} \int_{-\infty}^{+\infty} \exp \left\{i\left(L-\sum_{j}^{N_{s}} x_{j}\right) \cdot s\right\} \mathrm{d} s \mathrm{~d}^{N_{s}} x \\
& =\frac{1}{2 \pi l_{\text {max }}^{N_{s}}} \int_{-\infty}^{+\infty} \exp \{i L s\}\left[\int_{0}^{l_{\max }} \exp \{-i x \cdot s\} \mathrm{d} x\right]^{N_{s}} \mathrm{~d} s
\end{aligned}
$$

where we have assumed that the distribution of all segments are equal. We have also uesed the relation

$$
\exp \left\{-i \sum_{j=1}^{N_{s}} x_{j} s\right\}=\prod_{j=1}^{N_{s}} \exp \left\{-i x_{j} s\right\}=[\exp \{-i x s\}]^{N_{s}}
$$

Further caluclations yield

$$
\begin{aligned}
\int_{0}^{l_{\max }} \exp \{-i x s\} \mathrm{d} x & =\frac{1}{i s}\left[1-\exp \left\{-i l_{\max } s\right\}\right] \\
& =\frac{1}{i s} \exp \left\{-i \frac{l_{\max }}{2} s\right\}\left[\exp \left\{i \frac{l_{\max }}{2} s\right\}-\exp \left\{-i \frac{l_{\max }}{2} s\right\}\right] \\
& =\frac{2}{s} \exp \left\{-i \frac{l_{\max }}{2} s\right\} \sin \frac{l_{\max }}{2} s \\
& =l_{\max } \exp \left\{-i \frac{l_{\max }}{2} s\right\} \frac{\sin \frac{l_{\max }}{2} s}{\frac{l_{\max }}{2} s}
\end{aligned}
$$

Inserted in expression of $P_{e q}$ this yields

$$
\begin{aligned}
& P_{e q}(L)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \exp \left\{i\left(L-N_{s} \frac{l_{\max }}{2}\right) s\right\}\left(\frac{\sin \frac{l_{\max }}{2} s}{\frac{l_{\max }}{2} s}\right)^{N_{s}} \mathrm{~d} s \\
\left(\frac{\sin x s}{x s}\right)^{N_{s}} & =\exp \left\{N_{s} \cdot \ln \left[\frac{\sin x s}{x s}\right]\right\} \quad\left(\text { series expansion of } \frac{\sin x s}{x s}\right) \\
& \simeq \exp \left\{N_{s} \cdot \ln \left[1-\frac{1}{3!}(x s)^{2}+\cdots\right]\right\} \quad(\text { series expansion of } \ln [1+x]) \\
& \simeq \exp \left\{N_{s} \cdot\left(-\frac{1}{3!}(x s)^{2}+\cdots\right)\right\} \quad\left(x s=\frac{l_{\max }}{2} \cdot s, \text { assuming } x s \ll 1\right) \\
& \simeq \exp \left\{-\frac{N_{s}}{6}\left(\frac{l_{\max }}{2} s\right)^{2}\right\}
\end{aligned}
$$

Inserted in the expression of $P_{e q}$ this yields

$$
P_{e q}=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \exp \left\{i\left[L-N_{s} \frac{l_{\max }}{2}\right] s-\frac{N_{s}}{6}\left(\frac{l_{\max }}{2} s\right)^{2}\right\} \mathrm{d} s
$$

From mathematical tables we find that for $a>0$

$$
\int_{-\infty}^{+\infty} \exp \left\{-\left(a x^{2}+2 b x+c\right)\right\} \mathrm{d} x=\sqrt{\frac{\pi}{a}} \exp \left\{\frac{b^{2}-a c}{a}\right\}
$$

Employed on the equation of $P_{e q}(L)$ and utilizing that $N_{s} \cdot l_{\max }=L_{\max }$, we get

$$
\begin{aligned}
a & =\frac{N_{s}}{6}\left(\frac{l_{\max }}{2}\right)^{2}=\frac{1}{6 N_{s}}\left(L_{\max } / 2\right)^{2} \\
2 b & =-i\left[L-N_{s} l_{\max } / 2\right]=-i\left[L-L_{\max } / 2\right] \\
c & =0 \\
\Rightarrow \quad P_{e q}(L) & =\left(\frac{\pi}{\frac{1}{6 N_{s}}\left(L_{\max } / 2\right)^{2}}\right)^{1 / 2} \exp \left\{-\frac{\frac{1}{4} \cdot\left(L-L_{\max } / 2\right)^{2}}{\frac{1}{6 N_{s}}\left(L_{\max } / 2\right)^{2}}\right\}
\end{aligned}
$$

The average force between the endpoints of the chain is

$$
\begin{aligned}
F(L) & =-\frac{\mathrm{d}}{\mathrm{~d} L} A(L)=\frac{\mathrm{d}}{\mathrm{~d} L} T S(L) \\
& =\frac{\mathrm{d}}{\mathrm{~d} L} k_{B} T \ln Z=\frac{\mathrm{d}}{\mathrm{~d} L} k_{B} T \ln \left[\text { const } \cdot P_{e q}(L)\right] \\
& =k_{B} T \frac{\mathrm{~d}}{\mathrm{~d} L}\left[\text { const }+\frac{1}{2} \cdot \text { const }-\frac{\frac{1}{4} \cdot\left(L-L_{\max } / 2\right)^{2}}{\frac{1}{6 N_{s}}\left(L_{\max } / 2\right)^{2}}\right] \\
& =-k_{B} T \cdot \frac{\frac{1}{2} \cdot\left(L-L_{\max } / 2\right)}{\frac{1}{6 N_{s}}\left(L_{\max } / 2\right)^{2}}
\end{aligned}
$$

finally yielding the spring stifness

$$
\begin{equation*}
\underline{k_{S}}=-\frac{\mathrm{d} F(L)}{\mathrm{d} L}=\frac{k_{B} T}{\frac{1}{3 N_{s}}\left(L_{\max } / 2\right)^{2}}=\frac{3 k_{B} T}{N_{s}\left(l_{\max } / 2\right)^{2}} \tag{2}
\end{equation*}
$$

This is a very interesting result as it proves that though the spring constant of each individual spring approches zero (as $U_{2}=0$ for $l \in\left[0, l_{\max }\right]$), the spring constant of the complete chain does not vanish. This on condition that the individual springs has a maximal length, which in practice always is fulfilled. Such a molecule therefore is a pure entropy spring. For real polymers the spring potential is usually a mixture of a maximal stretching length, $L_{\text {max }}$, and a potential U_{1} within this length.

Also note that by assuming a segment length $Q=l_{\max } / 2$ for each spring, the spring stiffness in (2) equals the spring stiffnes calculated for the chain molecule in Eq. (1) $\left(N_{s}=N-1\right)$. This is so because Eq. (1) is calculated assuming that the polymer is an entropy spring.

