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SIF40AH/DIF4997
Nano-particle and polymer physics I

SOLUTION of EXERCISE 3

Eq. (x.x) refers to version AM11sep02 of lecture notes: “Nano-particle and polymer physics”.

A) The segment length Q = 10 nm. Note: Ns = 100 segments means N = Ns + 1 = 101.

i) Contour length: Lc = (N − 1)Q = 100× 10 nm = 1000 nm = 1, 0 µm

ii) Average end-to-end vector:

→
r e−e =

→
r e−e Peq(

→
r e−e) d

→
r e−e

where (Eq. (2.91))

Peq(
→
r e−e)d

→
r e−e=

3

2π(N − 1)Q2
3/2

exp − 3r2e−e
2(N − 1)Q2 · dxdydz

Because of the symmetry of Peq integration from −∞ to ∞ yields
→
r e−e = 0

iii) Average end-to-end distance:

re−e =
∞

0
re−e Peq(re−e) dre−e

where
Peq(re−e)dre−e = 4πr2e−e

3

2π(N − 1)Q2
3/2

exp − 3r2e−e
2(N − 1)Q2 · dre−e

From tables: ∞

0
r3 exp{−λr2} = λ−2/2

which yields

re−e =
8

3π
·√N − 1 ·Q = 92 nm

iv) Average quadratic end-to-end distance.

r2e−e = r2e−e Peq(
→
r e−e) d

→
r e−e

= r2e−e
3

2π(N − 1)Q2
3/2

exp − 3r2e−e
2(N − 1)Q2 d

→
r e−e

With d
→
r e−e= 4πr2e−edre−e (spherical symmetry) and integration from re−e = 0 to ∞ we obtain,

using tables:

r2e−e = (N − 1) Q2 = 100× 102 nm2 = 10000 nm2 ⇒ r2e−e = 100 nm

r2e−e can also be calculated alternatively:

r2e−e = Σ
100
i Σ100j

→
Qi ·

→
Qj = Σ

100
i Σ100j δij ·Q2 = 100 ·Q2
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v) Maximal stretch ratio:
Lc

r2e−e
=
1000 nm

100 nm
= 10

vi) Radius of gyration (Eq. (2.147):

R2G
eq
=
N2 − 1
6N

Q2 =
1

6

N + 1

N
r2e−e

eq
=
1

6

102

101
10000 nm2 = 1683 nm2

⇒ R2G eq = 41 nm

vi) Spring stiffness (spring constant) when changing the end-to-end distance of the
molecule:

|ks| =
F

r e−e
=

3kBT

(N − 1)Q2 (1)

=
3× 1.38× 10−23 Nm/deg× 300 deg

100× 100 nm2 = 1.2× 10−6 N/m

B)

i) The Helmholz free energy of each spring:

A = U1 − T · S = kS/2 · (l − lmax/2)2 − 0
This yields the average force between end points of the polymer

F = −dA
dl
= −kS · (l − lmax/2) ie. spring constant = −dF

dl
= kS

ii) When the potential equals U2 the entropy of the spring determines the spring stiffness. The
entropy S(L) as function of the end-to-end distance L is calculated through A(L) = U1−T ·S(L) =
0− T · S(L)
The function Peq(L) is the probability to find the end-to-end distance of the chain, L, within a
certain length:

Peq(L) =

· · ·
lmax

0
δ(L− Ns

j=1 xj)d
Nsx

· · ·
lmax

0
dNsx

where δ(y) is Diracs delta function and Ns = no. of segments = 100. The delta function is on
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integral form expressed

δ(y) =
1

2π

+∞

−∞
exp{iys}ds

Inserted in expression for Peq this yields

Peq(L) =
1

lNsmax
· · ·

lmax

0

1

2π

+∞

−∞
exp

i(L−
Ns

j

xj) · s
 ds dNsx

=
1

2π lNsmax

+∞

−∞
exp{iLs}

lmax

0
exp{−ix · s}dx

Ns

ds

where we have assumed that the distribution of all segments are equal. We have also uesed the
relation

exp{−i
Ns

j=1

xjs} =
Ns

j=1

exp{−ixjs} = [exp{−ixs}]Ns

Further caluclations yield
lmax

0
exp{−ixs}dx =

1

is
[1− exp{−ilmaxs}]

=
1

is
exp{−i lmax

2
s} exp{i lmax

2
s}− exp{−i lmax

2
s}

=
2

s
exp{−i lmax

2
s} sin lmax

2
s

= lmax exp{−i lmax
2
s}sin

lmax
2 s

lmax
2 s

Inserted in expression of Peq this yields

Peq(L) =
1

2π

+∞

−∞
exp i(L−Ns lmax

2
)s

sin lmax2 s
lmax
2 s

Ns

ds

sinxs

xs

Ns

= exp Ns · ln sinxs

xs
series expansion of

sinxs

xs

exp Ns · ln 1− 1

3!
(xs)2 + · · · (series expansion of ln[1 + x])

exp Ns · − 1
3!
(xs)2 + · · · xs =

lmax
2
· s, assuming xs 1

exp{−Ns
6
(
lmax
2
s)2}

Inserted in the expression of Peq this yields

Peq =
1

2π

+∞

−∞
exp i L−Ns lmax

2
s− Ns

6
(
lmax
2
s)2 ds

From mathematical tables we find that for a > 0
+∞

−∞
exp{−(ax2 + 2bx+ c)}dx = π

a
exp

b2 − ac
a

Employed on the equation of Peq(L) and utilizing that Ns · lmax = Lmax, we get

a =
Ns
6

lmax
2

2

=
1

6Ns
(Lmax/2)

2

2b = −i[L−Ns lmax/2] = −i[L− Lmax/2]
c = 0

⇒ Peq(L) =
π

1
6Ns
(Lmax/2)2

1/2

exp −
1
4 · (L− Lmax/2)2

1
6Ns
(Lmax/2)2
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The average force between the endpoints of the chain is

F (L) = − d

dL
A(L) =

d

dL
TS(L)

=
d

dL
kBT lnZ =

d

dL
kBT ln [const · Peq(L)]

= kBT
d

dL
const +

1

2
· const−

1
4 · (L− Lmax/2)2

1
6Ns
(Lmax/2)2

= −kBT ·
1
2 · (L− Lmax/2)

1
6Ns
(Lmax/2)2

,

finally yielding the spring stifness

kS = −d F (L)
dL

=
kBT

1
3Ns
(Lmax/2)2

=
3kBT

Ns(lmax/2)2
. (2)

This is a very interesting result as it proves that though the spring constant of each individual
spring approches zero (as U2 = 0 for l ∈ [0, lmax]), the spring constant of the complete chain does
not vanish. This on condition that the individual springs has a maximal length, which in practice
always is fulfilled. Such a molecule therefore is a pure entropy spring. For real polymers the spring
potential is usually a mixture of a maximal stretching length, Lmax, and a potential U1 within this
length.

Also note that by assuming a segment length Q = lmax/2 for each spring, the spring stiffness in
(2) equals the spring stiffnes calculated for the chain molecule in Eq. (1) (Ns = N − 1). This is so
because Eq. (1) is calculated assuming that the polymer is an entropy spring.
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