SIF40AH/DIF4997 Nano-particle and polymer physics I SOLUTION of EXERCISE 6

A) The d-dimensional vectors $\vec{X}=\left(X_{1}, X_{2}, \ldots, X_{d}\right), X_{i} \in[0,1]$ are generated from a uniform random-number generator. We intend to study the distribution of \vec{X} within a d-dimensional sphereshell. The generality of d dimensions (line, circle, sphere, ...) complicates things a bit, but dont't give up.
The volume of a d-dimensional sphere of radius $X=|\vec{X}|$ equals

$$
\begin{equation*}
V_{d}(X)=\Omega_{d} X^{d} \tag{1}
\end{equation*}
$$

where Ω_{d} is the volume of a sphere in d dimensions with radius equal to $1 .{ }^{1}$
The volume of a d-dimensional shell of sphere with thickness $\mathrm{d} X$ and radius X equals

$$
\begin{equation*}
\mathrm{d} V_{d}=\Omega_{d} \cdot d \cdot X^{d-1} \mathrm{~d} X \tag{2}
\end{equation*}
$$

Eq. (2) may be seen from the fact that $\mathrm{d} V_{d}=A_{d} \mathrm{~d} X$, so $A_{d}=\frac{\mathrm{d} V_{d}(X)}{\mathrm{d} X}=\Omega_{d} \cdot d \cdot X^{d-1}$, implying Eq. (2). Alternatively, visualize it by integration:

$$
\begin{equation*}
V_{d}(X)=\int_{0}^{X} A_{d} \mathrm{~d} X=\int_{0}^{X} \Omega_{d} d X^{d-1} \mathrm{~d} X=\Omega_{d} X^{d} \tag{3}
\end{equation*}
$$

The number of vectors, n, within a shell of sphere at radius X, relative to the number N within the whole sphere of radius R is

$$
\begin{equation*}
\frac{n}{N}=\frac{\mathrm{d} V_{d}}{V_{d}(R)}=\frac{\Omega_{d} d X^{d-1} \mathrm{~d} X}{\Omega_{d} R^{d}}=\frac{d \cdot X^{d-1} \mathrm{~d} X}{R^{d}} . \tag{4}
\end{equation*}
$$

So far for infinitesimal $\mathrm{d} X$. For finite $\mathrm{d} X=\Delta X$ we evaluate X in \bar{X} within the interval $(X, X+$ $\Delta X)$:

$$
\begin{equation*}
n=N \cdot \frac{d}{R^{d}} \cdot \bar{X}^{d-1} \Delta X \tag{5}
\end{equation*}
$$

An estimate of \bar{X} is the arithmetic middle in the interval:

$$
\begin{equation*}
\bar{X}_{1}=\frac{\Delta X}{2}, \quad \bar{X}_{2}=\frac{3 \Delta X}{2}, \quad \bar{X}_{i}=\frac{(2 i-1) \Delta X}{2}=(i-1 / 2) \Delta X . \tag{6}
\end{equation*}
$$

The number of vectors within the interval ΔX is thus

$$
\begin{equation*}
n=\frac{N d}{R^{d}} \cdot\left(i-\frac{1}{2}\right)^{d-1}(\Delta X)^{d} . \tag{7}
\end{equation*}
$$

Simulation: We have chosen: $d=2, \Delta X=1 / 10, R=1, N=100000$
With these parameters the estimated numbers of vectors is according to Eq. (7):

$$
\begin{equation*}
n=\frac{100000 \cdot 2}{1} \cdot\left(i-\frac{1}{2}\right)^{1}\left(\frac{1}{10}\right)^{2}=2000 \cdot\left(i-\frac{1}{2}\right)^{1} \tag{8}
\end{equation*}
$$

Estimated and simulated result in the following table. (Numbers from P.Skjetne using Turbo Pascal ver 5.5).

$$
{ }^{1} \Omega_{1}=2, \Omega_{2}=\pi, \Omega_{3}=4 \pi / 3, \Omega_{4}=\pi^{2} / 2, \Omega_{5}=8 \pi^{2} / 15, \Omega_{6}=\pi^{3} / 6, \text { generally: } \Omega_{d}=\frac{2 \pi^{d / 2}}{d \cdot \Gamma(d / 2)}
$$

Interval	\bar{X}	Theoretical	Simulated
1	0.05	1000	1024
2	0.15	3000	3044
3	0.25	5000	5051
4	0.35	7000	6881
5	0.45	9000	9122
6	0.55	11000	11072
7	0.65	13000	13014
8	0.75	15000	14893
9	0.85	17000	16904
10	0.95	19000	18995
Sum		101000	100000

The theoretical values do not summarize to $N=100000$ because of the approximation of \bar{X}.
B) Available is the uniform distribution $p(x)=1 \forall x \in[0,1]$, and we want to obtain a distribution $p(y)=\exp \{-y\}=e^{-y}$. Note that $p(y)$ is normalized because $\int_{0}^{\infty} p(y) \mathrm{d} y=\left[-e^{-y}\right]_{0}^{\infty}=1$.

Because $p(x)$ is uniform the hits on x is uniformly distributed along the x-axis. The distribution along y-axis should be according to $p(y)=e^{-y}$, that is highest density of hits at $y=0$ and decreasing constantly to 0 (figure A below). In the numerical transformation the numbers of hits $\mathrm{d} N_{x}$ within $\mathrm{d} x$ is mapped to exactly the same number of hits $\mathrm{d} N_{y}$ within (a wider) $\mathrm{d} y$. As the density of hits is $p(x)$ and $p(y)$, respectively, we obtain:

$$
\begin{equation*}
\mathrm{d} N_{x}=\mathrm{d} N_{y} \quad \Rightarrow \quad p(x) \mathrm{d} x=p(y) \mathrm{d} y . \tag{9}
\end{equation*}
$$

To determine the formulae of transformation we integrate Eq. (9) from $(0,0)$ to (x, y) :

$$
\begin{equation*}
\int_{0}^{x} p(x) \mathrm{d} x=\int_{0}^{y} p(y) \mathrm{d} y \quad \Rightarrow \quad \int_{0}^{x} 1 \mathrm{~d} x=\int_{0}^{y} e^{-y} \mathrm{~d} y \quad \Rightarrow \quad x=1-e^{-y} \tag{10}
\end{equation*}
$$

The inverse function is

$$
\begin{equation*}
\underline{y(x)=-\ln (1-x)}, \tag{11}
\end{equation*}
$$

and with x uniformly distributed on $x \in[0,1]$ we obtain the required distribution $p(y)$.

We may also argument for this distribution by an approximate numerical method:

We divide the interval $x \in[0,1]$ in N equal intervals and approximates the tranformation graph to a straight line between two neighbouring points (figure B above). The point $\left(x_{n}, y_{n}\right)$ is given by

$$
\begin{align*}
x_{n} & =1-e^{-y_{n}}, \quad \text { where } x_{n}=\frac{n}{N} \\
\Rightarrow \quad y_{n} & =-\ln \left(1-\frac{n}{N}\right) \tag{12}
\end{align*}
$$

Inbetween the neighbouring points we approximate to a straight line:

$$
\begin{equation*}
\frac{y(x)-y_{n}}{x-x_{n}}=\frac{\Delta y}{\Delta x}=\frac{y_{n+1}-y_{n}}{x_{n+1}-x_{n}}=\frac{y_{n+1}-y_{n}}{1 / N} \tag{13}
\end{equation*}
$$

The n to be used for the actual x is the one which makes x belong to the interval $\left(\frac{n}{N}, \frac{n+1}{N}\right) . y(x)$ is found to be:

$$
\begin{align*}
y(x) & =y_{n}+N \cdot\left[y_{n+1}-y_{n}\right] \cdot\left(x-\frac{n}{N}\right) \\
& \stackrel{(12)}{=}-\ln \left(1-\frac{n}{N}\right)-N\left[\ln \left(1-\frac{n+1}{N}\right)-\ln \left(1-\frac{n}{N}\right)\right]\left(x-\frac{n}{N}\right) \\
& =-\ln \left(1-\frac{n}{N}\right)-N \ln \left(1-\frac{1}{N} \cdot\left(1-\frac{n}{N}\right)^{-1}\right)\left(x-\frac{n}{N}\right) \\
& =-\ln \left(1-\frac{n}{N}\right)+N \frac{1}{N} \cdot\left(1-\frac{n}{N}\right)^{-1}\left(x-\frac{n}{N}\right) \\
& \approx-\ln \left(1-\frac{n}{N}\right)+\left(1+\frac{n}{N}\right)\left(x-\frac{n}{N}\right) \tag{14}
\end{align*}
$$

where we have utilized that for large N (small ϵ) is $\ln (1+\epsilon) \approx \epsilon$. Further, $\frac{n}{N} \rightarrow x$ for large N, so the result is:

$$
\begin{equation*}
y(x) \approx-\ln (1-x) \tag{15}
\end{equation*}
$$

as equals the result from the analytical method above.
C) The Box-Muller algorithm to generate random Gaussian distributed numbers is given in text.

Simulation:

The result of drawing x_{1} and x_{2} randomly in $[0,1]$ and using the Box-Muller algorithm is plotted below. In the simulation we have used $N=100000$ and normalized $y(x) . y \in[-5,5]$ is divided in 20 intervals and the number of hits within each interval is plotted. (Data from P. Skjetne, theoretical and numerical curve:)

