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SIF40AH/DIF4997
Nano-particle and polymer physics I

SOLUTION of EXERCISE 6

A) The d-dimensional vectors X = (X1,X2, . . . , Xd), Xi ∈ [0, 1] are generated from a uniform
random-number generator. We intend to study the distribution of X within a d-dimensional sphere-
shell. The generality of d dimensions (line, circle, sphere, . . . ) complicates things a bit, but dont’t
give up.

The volume of a d-dimensional sphere of radius X = |X| equals
Vd(X) = ΩdX

d, (1)

where Ωd is the volume of a sphere in d dimensions with radius equal to 1.
1

The volume of a d-dimensional shell of sphere with thickness dX and radius X equals

dVd = Ωd · d ·Xd−1dX. (2)

Eq. (2) may be seen from the fact that dVd = AddX, so Ad =
dVd(X)
dX = Ωd · d ·Xd−1, implying Eq.

(2). Alternatively, visualize it by integration:

Vd(X) =
X

0
Ad dX =

X

0
Ωd d X

d−1dX = ΩdX
d (3)

The number of vectors, n, within a shell of sphere at radius X, relative to the number N within
the whole sphere of radius R is

n

N
=

dVd
Vd(R)

=
Ωd d X

d−1dX
ΩdRd

=
d ·Xd−1dX

Rd
. (4)

So far for infinitesimal dX. For finite dX = ∆X we evaluate X in X̄ within the interval (X,X +
∆X):

n = N · d
Rd

· X̄d−1∆X. (5)

An estimate of X̄ is the arithmetic middle in the interval:

X̄1 =
∆X

2
, X̄2 =

3∆X

2
, X̄i =

(2i− 1)∆X
2

= (i− 1/2)∆X. (6)

The number of vectors within the interval ∆X is thus

n =
Nd

Rd
· i− 1

2

d−1
(∆X)d . (7)

Simulation: We have chosen: d = 2,∆X = 1/10, R = 1, N = 100000

With these parameters the estimated numbers of vectors is according to Eq. (7):

n =
100000 · 2

1
· i− 1

2

1 1

10

2

= 2000 · i− 1
2

1

(8)

Estimated and simulated result in the following table. (Numbers from P.Skjetne using Turbo Pascal
ver 5.5).

1Ω1 = 2,Ω2 = π,Ω3 = 4π/3,Ω4 = π2/2,Ω5 = 8π
2/15,Ω6 = π3/6, generally: Ωd =

2πd/2

d · Γ(d/2)
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Interval X̄ Theoretical Simulated
1 0.05 1000 1024
2 0.15 3000 3044
3 0.25 5000 5051
4 0.35 7000 6881
5 0.45 9000 9122
6 0.55 11000 11072
7 0.65 13000 13014
8 0.75 15000 14893
9 0.85 17000 16904
10 0.95 19000 18995

Sum 101000 100000

The theoretical values do not summarize to N = 100000 because of the approximation of X̄.

B) Available is the uniform distribution p(x) = 1 ∀ x ∈ [0, 1], and we want to obtain a distribution
p(y) = exp{−y} = e−y. Note that p(y) is normalized because

∞

0
p(y)dy = −e−y ∞0 = 1.

Because p(x) is uniform the hits on x is uniformly distributed along the x-axis. The distribution
along y-axis should be according to p(y) = e−y, that is highest density of hits at y = 0 and
decreasing constantly to 0 (figure A below). In the numerical transformation the numbers of hits
dNx within dx is mapped to exactly the same number of hits dNy within (a wider) dy. As the
density of hits is p(x) and p(y), respectively, we obtain:

dNx = dNy ⇒ p(x)dx = p(y)dy. (9)

To determine the formulae of transformation we integrate Eq. (9) from (0, 0) to (x, y):
x

0
p(x)dx =

y

0
p(y)dy ⇒

x

0
1 dx =

y

0
e−ydy ⇒ x = 1− e−y (10)

The inverse function is
y(x) = − ln(1− x), (11)

and with x uniformly distributed on x ∈ [0, 1] we obtain the required distribution p(y).

We may also argument for this distribution by an approximate numerical method:
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We divide the interval x ∈ [0, 1] in N equal intervals and approximates the tranformation graph to
a straight line between two neighbouring points (figure B above). The point (xn, yn) is given by

xn = 1− e−yn , where xn =
n

N

⇒ yn = − ln 1− n

N
(12)

Inbetween the neighbouring points we approximate to a straight line:

y(x)− yn
x− xn =

∆y

∆x
=
yn+1 − yn
xn+1 − xn =

yn+1 − yn
1/N

(13)

The n to be used for the actual x is the one which makes x belong to the interval ( nN ,
n+1
N ). y(x)

is found to be:

y(x) = yn +N · [yn+1 − yn] · x− n

N
(12)
= − ln 1− n

N
−N ln 1− n+ 1

N
− ln 1− n

N
x− n

N

= − ln 1− n

N
−N ln 1− 1

N
· 1− n

N

−1
x− n

N

= − ln 1− n

N
+N

1

N
· 1− n

N

−1
x− n

N

≈ − ln 1− n

N
+ 1 +

n

N
x− n

N
(14)

where we have utilized that for large N (small ) is ln(1 + ) ≈ . Further, nN → x for large N , so
the result is:

y(x) ≈ − ln(1− x), (15)

as equals the result from the analytical method above.

C) The Box-Muller algorithm to generate random Gaussian distributed numbers is given in text.

Simulation:
The result of drawing x1 and x2 randomly in [0, 1] and using the Box-Muller algorithm is plotted
below. In the simulation we have used N = 100000 and normalized y(x). y ∈ [−5, 5] is divided in 20
intervals and the number of hits within each interval is plotted. (Data from P. Skjetne, theoretical
and numerical curve:)
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