SIF40AH/DIF4997 Nano-particle and polymer physics I SOLUTION of EXERCISE 7

Eq. (x.x) refers to version AM11sep02 of lecture notes:"Nano-particle and polymer physics".
Equations pertinent to this exercise you will find in Ch. 5.2.1
A) The sphere perturbs the velocity field with an amount \vec{v}^{\prime}, and the resultant fluid velocity is thus

$$
\begin{equation*}
\vec{v}=\vec{u}+\vec{v}^{\prime} \tag{1}
\end{equation*}
$$

where \vec{u} is the stationary velocity field. We apply coordinates $\left(\vec{\delta}_{r}, \vec{\delta}_{\theta}, \vec{\delta}_{\phi}\right)$ as given in Fig. 5.2 of lecture notes, i.e. $\vec{v}=v_{r} \vec{\delta}_{r}+v_{\theta} \vec{\delta}_{\theta}+v_{\phi} \vec{\delta}_{\phi}$. Axial symmetry about z-axis implies $v_{\phi}=0$. We choose to direct the stationary velocity field along the z-axis: $\vec{u}=-u \vec{\delta}_{z}=-u \cos \theta \vec{\delta}_{r}+u \sin \theta \vec{\delta}_{\theta}$.

According to Eqs. (5.39)-(5.40) the resulting velocity field is expressed

$$
\begin{align*}
& v_{r}(r, \theta)=-u\left[1-\frac{3}{2}\left(\frac{\sigma}{r}\right)+\frac{1}{2}\left(\frac{\sigma}{r}\right)^{3}\right] \cos \theta \tag{2}\\
& v_{\theta}(r, \theta)=u\left[1-\frac{3}{4}\left(\frac{\sigma}{r}\right)-\frac{1}{4}\left(\frac{\sigma}{r}\right)^{3}\right] \sin \theta \tag{3}
\end{align*}
$$

Note that the boundary conditions are fulfilled:

$$
\begin{align*}
\text { at the bead surface } r=\sigma: & v_{\theta}(\sigma, \theta)=0 \text { (no slip condition) } v_{r}(\sigma, \theta)=0, \tag{4}\\
\text { far away from the bead: } & \lim _{r \rightarrow \infty} v_{r}=-u \cos \theta ; \lim _{r \rightarrow \infty} v_{\theta}=u \sin \theta \quad\left(\lim _{r \rightarrow \infty} \vec{v}=\vec{u}\right) . \tag{5}
\end{align*}
$$

A sketch of \vec{v} :

B) The pressure distribution on the bead surface is given by Eq. (5.43) with $r=\sigma$:

$$
\begin{equation*}
p(r=\sigma, \theta)=\left[\frac{3}{2} \eta_{\mathrm{s}} u \sigma^{-1}-\rho_{\mathrm{m}} g \sigma\right] \cos \theta+p_{0}, \tag{6}
\end{equation*}
$$

where η_{s} is the fluid viscosity, g is the gravitational constant, ρ_{m} is the mass density of the fluid and p_{0} is a constant. The term containing g represents the buoyancy. Relative to p_{0}, the pressure on the bead surface is

$$
\begin{equation*}
p(\sigma, \theta)-p_{0} \quad \propto \quad \cos \theta, \tag{7}
\end{equation*}
$$

represented by arrows in the sketch:

C) The geometry is the same when the solid sphere is replaced an air bubble, however, the boundary conditions are different. The requirement at $r \rightarrow \infty$ is as above, and the condition $v_{r}(\sigma)=0$ is still valid as no fluid may cross into the bubble. However the non-slip condition $v_{\theta}(\sigma)=0$ does not apply as there is no surface to "stick" on. In place, the shear force $\tau_{r \theta}$ along the surface must be zero at the bubble surface. The boundary conditions at the bead surface $r=\sigma$ therefore are

$$
\begin{equation*}
v_{r}(\sigma, \theta)=0 \quad \tau_{r \theta}(\sigma, \theta)=0 \tag{8}
\end{equation*}
$$

We may follow the solution in lecture notes up to where the boundary conditions are included. That is, we introduce the stream function Ψ by the definition

$$
\begin{equation*}
v_{r}=-\frac{1}{r^{2} \sin \theta} \frac{\partial \Psi}{\partial \theta} \quad \text { and } \quad v_{\theta}=\frac{1}{r \sin \theta} \frac{\partial \Psi}{\partial r} \tag{9}
\end{equation*}
$$

Ψ is assumed to be expressed

$$
\begin{equation*}
\Psi(r, \theta)=f(r) \cdot \sin ^{2} \theta \tag{10}
\end{equation*}
$$

where the trial solution of $f(r)$ is

$$
\begin{align*}
f(r) & =A_{-1} r^{-1}+A_{1} r^{1}+A_{2} r^{2}+A_{4} r^{4} \\
\Rightarrow f^{\prime}(r) & =-A_{-1} r^{-2}+A_{1}+2 A_{2} r+4 A_{4} r^{3} \\
\Rightarrow f^{\prime \prime}(r) & =2 A_{-1} r^{-3}+2 A_{2}+12 A_{4} r^{2} \tag{11}
\end{align*}
$$

The boundary conditions for $r \rightarrow \infty$ yields $A_{2}=\frac{u}{2}$ and $A_{4}=0$ (see Eq. (5.33)), the boundary conditions at $r=\sigma$ (Eq. (8)) evaluate to:

$$
\begin{align*}
v_{r}(\sigma, \theta) & =0 \quad \stackrel{\text { Eq. }}{\Rightarrow}(9) \tag{12}\\
\Rightarrow & \left.\frac{\partial \Psi}{\partial \theta}\right|_{r=\sigma}=0 \quad \Rightarrow \quad 2 \sin \theta \cos \theta f(\sigma)=0 \quad \Rightarrow \quad f(\sigma)=0 \tag{13}\\
\tau_{r \theta} & =-\eta_{\mathrm{s}}\left[r \frac{\partial}{\partial r}\left(\frac{v_{\theta}}{r}\right)+\frac{1}{r} \frac{\partial v_{r}}{\partial \theta}\right]_{r=\sigma}=0 \Rightarrow \sigma f^{\prime \prime}-2 f^{\prime}=0 \quad \text { for } \quad r=\sigma
\end{align*}
$$

Details of the last calculation (note that $v_{r}=0$ for all θ):

$$
\begin{align*}
\tau_{r \theta} & =-\eta_{\mathrm{s}}\left[r \frac{\partial}{\partial r}\left(\frac{v_{\theta}}{r}\right)\right]_{r=\sigma}=-\eta_{\mathrm{s}}\left[r \frac{\partial}{\partial r}\left(\frac{1}{r^{2} \sin \theta} \frac{\partial \Psi}{\partial r}\right)\right]_{r=\sigma} \\
& =-\eta_{\mathrm{s}}\left[r \frac{\partial}{\partial r}\left(\frac{f^{\prime}(r) \sin \theta}{r^{2}}\right)\right]_{r=\sigma}=-\eta_{\mathrm{s}}\left[r \frac{f^{\prime \prime}(r)}{r^{2}}-2 r \frac{f^{\prime}(r)}{r^{3}}\right]_{r=\sigma} \sin \theta \\
& =-\eta_{\mathrm{s}}\left[\frac{f^{\prime \prime}(\sigma)}{\sigma}-2 \frac{f^{\prime}(\sigma)}{\sigma^{2}}\right] \sin \theta \tag{14}
\end{align*}
$$

Eqs. (12) and (13) inserted in Eq. (11) make the coefficients A_{-1} and A_{1} determined:

$$
\begin{align*}
f(\sigma) & =A_{-1} \sigma^{-1}+A_{1} \sigma^{1}+A_{2} \sigma^{2}=0 \\
\sigma f^{\prime \prime}(\sigma)-2 f^{\prime}(\sigma) & =2 A_{-1} \sigma^{-2}+2 A_{2} \sigma+2 A_{-1} \sigma^{-2}-2 A_{1}-4 A_{2} \sigma=0 \\
& \Rightarrow A_{-1}=0 \wedge A_{1}=-A_{2} \sigma=-\frac{u}{2} \sigma \\
& \Rightarrow f(r)=\frac{u}{2}\left(r^{2}-\sigma r\right) \quad \text { and } \quad \Psi(r, \theta)=\frac{u}{2}\left(r^{2}-\sigma r\right) \sin ^{2} \theta \tag{15}
\end{align*}
$$

Inserted in Eq. (9)

$$
\begin{align*}
& v_{r}=-u\left[1-\frac{\sigma}{r}\right] \cos \theta \tag{16}\\
& v_{\theta}=u\left[1-\frac{1}{2} \frac{\sigma}{r}\right] \sin \theta . \tag{17}
\end{align*}
$$

It is interesting to compare this velocity field to the velocity field around a rigid sphere in Eqs. (2) and (3).

To determine the friction coefficient, ζ, we need the total force, F_{z}, in z-direction, as $F_{z}=-\zeta \cdot u+$ $F_{\text {buoyancy }}$. Integrate as for a solid bead (Eq. (5.44)):

$$
\begin{equation*}
F_{z}=\left.\int_{0}^{2 \pi} \int_{0}^{\pi}\left(-\overrightarrow{\boldsymbol{\delta}}_{z} \cdot \overrightarrow{\boldsymbol{\pi}}_{n}\right)\right|_{r=\sigma} \sigma^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \tag{18}
\end{equation*}
$$

where $\overrightarrow{\boldsymbol{\pi}}_{n}$ is the traction normal to the bubble and thus

$$
\begin{align*}
-\overrightarrow{\boldsymbol{\delta}}_{z} \cdot \overrightarrow{\boldsymbol{\pi}}_{n}=-\overrightarrow{\boldsymbol{\delta}}_{z} \cdot \overrightarrow{\boldsymbol{\delta}}_{r} \cdot \overrightarrow{\boldsymbol{\pi}} & =-\overrightarrow{\boldsymbol{\delta}}_{z} \cdot\left(\pi_{r r} \overrightarrow{\boldsymbol{\delta}}_{r}+\pi_{r \theta} \overrightarrow{\boldsymbol{\delta}}_{\theta}\right) \\
& =-\left(p+\tau_{r r}\right) \overrightarrow{\boldsymbol{\delta}}_{z} \cdot \overrightarrow{\boldsymbol{\delta}}_{r}-\tau_{r \theta} \overrightarrow{\boldsymbol{\delta}}_{z} \cdot \overrightarrow{\boldsymbol{\delta}}_{\theta} \\
& =-\left(p+\tau_{r r}\right)(-\cos \theta)-0 \cdot \overrightarrow{\boldsymbol{\delta}}_{z} \cdot \overrightarrow{\boldsymbol{\delta}}_{\theta} \tag{19}
\end{align*}
$$

where we have used $\overrightarrow{\boldsymbol{\delta}}_{z}=\overrightarrow{\boldsymbol{\delta}}_{r} \cos \theta-\overrightarrow{\boldsymbol{\delta}}_{\theta} \sin \theta$ and Eq. (8): $\tau_{r \theta}=0$.
The pressure $p(r, \theta)$ is determined from the equation of motion:

$$
\begin{align*}
\frac{\partial p}{\partial r} & =\eta_{\mathrm{s}} \nabla^{2} v_{r}+\rho_{\mathrm{m}} \vec{g} \cdot \vec{\delta}_{r} \\
& =\eta_{\mathrm{s}}\left[\frac{1}{r^{2}} \frac{\partial^{2}}{\partial r^{2}}\left(r^{2} v_{r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial v_{r}}{\partial \theta}\right)\right]-\rho_{\mathrm{m}} g \cos \theta \\
& \stackrel{(16)}{=} \eta_{\mathrm{s}}\left[\frac{1}{r^{2}}(-2 u \cos \theta)+\frac{1}{r^{2}} 2 u \cdot\left(1-\frac{\sigma}{r}\right) \cos \theta\right]-\rho_{\mathrm{m}} g \cos \theta \\
& =-2 u \eta_{\mathrm{s}} \frac{\sigma}{r^{3}} \cos \theta-\rho_{\mathrm{m}} g \cos \theta \tag{20}
\end{align*}
$$

Integration yields

$$
\begin{equation*}
p(r, \theta)=u \eta_{\mathrm{s}} \frac{\sigma}{r^{2}} \cos \theta-\rho_{\mathrm{m}} g r \cdot \cos \theta+p_{0} \tag{21}
\end{equation*}
$$

Finally we in Eq. (19) need $\tau_{r r}$. From $\overrightarrow{\boldsymbol{\tau}}=-\eta_{\mathrm{s}}\left(\nabla \vec{v}+(\nabla \vec{v})^{\mathrm{T}}\right)$ we obtain

$$
\begin{equation*}
\tau_{r r}=-2 \eta_{\mathrm{s}} \frac{\partial v_{r}}{\partial r}=2 \eta_{\mathrm{s}} u \frac{\sigma}{r^{2}} \cos \theta \tag{22}
\end{equation*}
$$

Inserted in Eq. (19):

$$
\begin{align*}
-\overrightarrow{\boldsymbol{\delta}}_{z} \cdot \overrightarrow{\boldsymbol{\pi}}_{n} & =-\left(u \eta_{\mathrm{s}} \frac{\sigma}{r^{2}} \cos \theta-\rho_{\mathrm{m}} g r \cdot \cos \theta+p_{0}+2 \eta_{\mathrm{s}} u \frac{\sigma}{r^{2}} \cos \theta\right)(-\cos \theta) \\
& =3 u \eta_{\mathrm{s}} \frac{\sigma}{r^{2}} \cos ^{2} \theta-\rho_{\mathrm{m}} g r \cdot \cos ^{2} \theta-p_{0} \cos \theta \tag{23}
\end{align*}
$$

and the force in Eq. (18) is determined by integration, using

$$
\iint \cos \theta \sin \theta \mathrm{d} \theta \mathrm{~d} \phi=0 \quad ; \quad \iint \cos ^{2} \theta \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi=4 \pi / 3
$$

yielding at $r=\sigma$

$$
\begin{equation*}
F_{z}=-4 \pi \eta_{\mathrm{s}} \sigma u+\frac{4 \pi}{3} \sigma^{3} \rho_{\mathrm{m}} g \tag{24}
\end{equation*}
$$

The last term equals the buoyancy and the first the viscous drag where the (translational) friction coefficient is recognized as

$$
\begin{equation*}
\zeta_{\text {bubble }}=4 \pi \eta_{\mathrm{s}} \sigma \tag{25}
\end{equation*}
$$

Note that the friction of the air bubble is $4 / 6$ of the friction of a solid bead of the same size.

The velocity of free rise is found by $F_{z}=0$, yielding

$$
u=\frac{\rho_{\mathrm{m}}}{3 \eta_{\mathrm{s}}} \sigma^{2} g
$$

At this value of u Eqs. (21) and (22) show that at the surface of the bubble the total traction normal to the bubble equals p_{0} for all values of θ :

$$
\begin{align*}
\pi_{r r} & =p+\tau_{r r} \\
& =\left(-\frac{2}{3} \rho_{\mathrm{m}} \sigma g \cos \theta+p_{0}\right)+\frac{2}{3} \rho_{\mathrm{m}} \sigma g \cos \theta \\
& =p_{0} \tag{26}
\end{align*}
$$

This means that the bubble will remain spherical. However, inertial forces (not included here) will tend to deform the bubble, and the bubble shape will be given as a balance among viscous, inertial, and surface tension forces.

