SIF40AH/DIF4997 Nano-particle and polymer physics I EXERCISE 6

In this numerical exercise, choose a random-number generator from a numerical library, make your own or apply the one being a part of your computer.
A) Generate a certain number of d-dimensional vectors where the components are numbers from the random-number generator.

Imagine that you in the d-dimensional vector space have a number of sphere-shells all with centers in origo and with the same shell thickness. Make a table showing the relative number of generated vectors falling inside the individual shell of spheres, as a function of the length of the d-vector of the respective shell. Compare the result of the simulations with what is expected if the random-number generator were ideal.
Hint: See the demo-library of Press et al. "Numerical Recipes."
B) Use the approximate method for numerical transformations of random numbers to make an algorithm estimating random numbers with the distribution

$$
p(y)=\exp \{-y\}
$$

and compare the result of your simulations with the ideal analytical result.

The Box-Muller algorithm to generate random Gaussian numbers is defined:
Assume x_{1} and x_{2} are uniformly distributed on [0,1]. The transformations

$$
\begin{aligned}
& y_{1}\left(x_{1}, x_{2}\right)=\sqrt{-2 \ln x_{1}} \cos \left(2 \pi x_{2}\right) \\
& y_{2}\left(x_{1}, x_{2}\right)=\sqrt{-2 \ln x_{1}} \sin \left(2 \pi x_{2}\right)
\end{aligned}
$$

yields a Gaussian distribution for both y_{1} and y_{2}, that is

$$
y_{i}=\frac{1}{\sqrt{2 \pi}} \exp \left\{-y_{i}^{2} / 2\right\}
$$

C) Make a program which generates Gaussian distributed random numbers by implementing the Box-Muller algorithm. Compare your result with the ideal analytical result.

