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REFLECTION AND TRANSMISSION

The starting point for our discussion is Maxwells equations. These lead to the boundary
conditions saying that the tangential components of    E  og H  are continuous across a
boundary.  These conditions lead for example to Fresnel’s formulas for the reflection from a
single boundary.

We will now look at the reflection from a thon film on a substrate. The system is illustrated
in the figure below.

The incident wave Ei hits the first interface. Some is reflected from the first interface, some is
transmitted ant then reflected at the second interface etc. WE get a sum of partial waves (NB
we are summing field amplitudes)

r = r01 + t01r12t10e
2iδ1 + t01r12r10r12t10e

4iδ1 + − − − − −

= r01 +
r12t01t10e

2iδ1

1+ r12r01e
2iδ1

  

t = t01t12eiδ1 + t01r12r10t12e
3iδ1 + − − − − −

=
t01t12e

iδ1

1+ r12r01e
2iδ1

We use Fresnel’s equations to simplify the expression for r
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r =

r01 + (r01
2 r12 + r12t01t10e

2iδ1

1 + r12r01e
2iδ1

From Fresnel’s formulas you can show that ro12 + to1t1o = 1.  This leads to

  
r =

r01 + r12e2iδ 1

1 + r12r01e
2iδ 1

                     Show this yourself!

2δ1 is the phase difference between waves  1 and 2.  From the optical path difference we get

  
δ1 =

2π

λ
n1d1 cos ϕ1

Proof:  

The difference in optical path length (n times geometrical path length):

n12d

cosφ1

−2dtgφ1 sinφ0n0

=2d
n1

cosφ1

− tgφ1 sinφ0n0

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

=2d
n1

cosφ1

−
sinφ1

cosφ1

n1 sin φ1

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ = 2dn1 cos φ1

 This gives 
  
δ1 =

2π

λ
n1d1 cos ϕ1 .

ro1 and r12  are the reflection coefficients at the 0,1 and 1,2 interfaces. They are given by
Fresnel’s formulaes.

n0

n1

φ0

φ1
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A double film can now be solved by recursion. We then replace the reflection from the back
side by the reflection from a film-covered surface

  
r =

r01 + ρe2iδ1

1 + ρ⋅ r01e
2iδ1

Where ρ =
r12 + r23e

2iδ2

1 + r12 ⋅ r23e2iδ 2

Is inserted:

r =
r01 + r12e

2iδ1 + r23e
2i(δ1 +δ2 ) + r01r12r23e

2iδ2

1 + r01r12e2iδ 1 + r01r23e
2i(δ1 +δ 2 ) + r12 ⋅ r23e

2iδ 2

This is becoming somewhat complicated for many layers. We will turn to transfer matrix
theory. This is a better solution for a system containing many layers.

MATRIX THEORY FOR FILMS

We will first develop an expression for the transfer matrix for a single film on a substrate.
Look at the following situation:
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We have a film of thickness d. The system consists of a wave  with an incident field vector
E o and incident k -vector  equal k o, a reflected wave in the first medium,  a transmitted
and reflected field in the second medium a transmitted wave in the third medium. We use
the continuity equations at the interfaces

Etang is continuous, Htang is continuous.  Furthermore from Maxwell’s equations:

  k  x   E = µω  H    ⇒    H = Zo-1n.E           Zo  is the socalled surface impedance

n is the refractive index.

The continuity equations used on the first interface give:

Eo + Eo' = E1 + E1' (I)

Ho - Ho' = H1 - H1'     (NB!�The direction of   H  is give by the direction of   E )

We use H∝  nE ⇒

noEo - noEo' = n1E1 - n1E1' (II)

n0 n1 nT

k0

k'0 k'1

k1

kTE0

E'0 E'1

E1
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Second interface:

E1  e
ik 1d  + E1'  e

− ik1d  = ET (III)

H1  e
ik 1d  - H1'  e

− ik1d  = HT

n1E1  e
ik 1d  - n1E1'  e

− ik1d  = nTET (IV)

We solve the equations  (I) - (IV) for Eo' and ET, after rearranging as follows

III: (E1 + E1')cosk1d + (E1 - E1') i.sink1d =�ET

IV: n1(E1 - E1')cosk1d + n1(E1 + E1')i.sink1d = nTET

We eliminate the fields inside the film by first solving for Eo'�+�Eo and Eo�-�Eo'.

This gives:

1 + 
E0

'

E0
= (cosk1d - i 

nT

n1
 sink1d)

ET

E0

no - no 
E0

'

E0
 = (- in1sink1d + nTcosk1d) 

ET

E0

Written in matrix form

  

1
n0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +

1
−n0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

E0
'

E0
=

cos k1d
−i
n1

sin k 1d

−in1 sin k1d cosk1d

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

1
nT

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

ET

E0

But 
  

E0
'

E0
 is just the reflection coefficient r and ET/Eo is the transmission coefficient t

  

1
n0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +

1
−n0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ r = M

1
nT

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ t

  

M =
cosk1d

−i
n1

sin k1d

−in1 sin k1d cosk1d

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

is the transfer  matrix for one film.  For a system of many films the total transfer matrix is
just a product of matrices
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1
n0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +

1
−n0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ r = M1 M2 M3 M4 .... .Mn

1
nT

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ t

We can thus  easily calculate r and t for complex systems by multiplying 2x2  matrices.

Each matrix is of the form

  

Mi =
coski di

−i
ni

sin k idi

−ini sin k idi cos kidi

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

and the product of the form  M =
A B
C D

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

This gives

  

1
n0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +

1
−n0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ r =

A B
C D

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

1
nT

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ t

or after performing the matrix –vector multiplication

1 + r = (A�+ nTB)t

no(1 - r) = (C + nTD)t

Solved for r and t we get:

  
r =

An0 + Bn0nT − C − DnT

An0 + Bn0nT + C + DnT

t =
2n0

An0 + Bn0 nT + C + DnT

 =========================

The physics behind the matrix formalism is easier to seee if we write it on the following
form:

  

E0

H0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +

E0
'

H0
'

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = M

ET

HT

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Eo + Eo' = EoI       is the total field at surface I......

E0
I

H0
I

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = M

ET

HT

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
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The transfer matrix thus transfers the total field from one interface to the next.

For non-normal incidence we can develop the equivalent theory. We start with a wave
incident at an angle ϕ .  The boundary conditions are the same, the tangential component of E
and H are continuous.

Here we must distinguish between two cases, s- and p- polarised waves. S-polarised has its
E-vector normal to the plane of incidence, p-polarised has its E-vector in the plane of
incidence. The result is:

p-polarisation:

  

cosϕ0

n0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +

cos ϕ0

−n0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ r = Mp

cosϕT

nT

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ t

with

  

Mp =
cosβ

−i
p

sin β

−ip sinβ cosβ

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

β = k1d cosϕ1 p = n1 / cosϕ1

n1 is the refractive index of the film
ϕ1 is the propagation direction in the film

This finally gives:

  
rp =

An0 cosϕT + Bn0nT − Ccos ϕ0 cosϕT − DnT cosϕ0

An0 cos ϕT + Bn0nT + Ccos ϕ0 cosϕT + DnT cosϕ0

and a corresponding equation for tp.

For s polarisation:

  

1
n0 cosϕ0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +

1
−n0 cosϕ0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ r = Ms

1
nT cosϕT

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ t

  Ms  has the same form as    Mp , but with

β = k1d cosϕ1 p = n1 cosϕ1

and
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r s =

An0 cosϕ0 + Bn0nT cosϕ0 cosϕT − C − DnT cosϕT

An0 cosϕ0 + Bn0nT cosϕ0 cosϕT + C + DnT cos ϕT

In the limit d ⇒  0 blir A = D = 1, B = C = 0

  
rp =

n0 cosϕT − nT cosϕ0

n0 cosϕT + nT cosϕ0

  
r s =

n0 cos ϕ0 − nT cosϕT

n0 cos ϕ0 + nT cosϕT

This is nothing but Fresnels formulas for a film-free surface

ANTIREFLECTION COATING
WE will now use this theory on some relevant systems

A simple antireflection coating is shown in the figure. We assume normal incidence. The we
know that:

n0

n1

n

dFilm

Substrat
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r =
An0 + Bnn0 − C − Dn
An0 + Bnn0 + C + Dn

A = cos k1d C = −in1 sin k1d

B =
−i
n1

sin k1d D = A

Inserted:

  
r =

n1(n0 − n)cos kd − i(nn0 − n1
2 )sin kd

n1(n0 + n)cos kd − i(nn0 + n1
2 )sin kd

We take d = λ/4   →  coskd = 0,  sinkd=1.0
This gives:

  
r =

(nn0 − n1
2 )

(nn0 + n1
2 )

When   n1 = n0n   ,   r = 0

This is the fundamentals of anti-reflection coatings. This simple system is only good  for
⊥ ιincidence and due to dispersion only for one λ .  To get a wide band anti-reflection
coating we must use a multilayer coating.

HIGH-REFLECTANCE COATINGS

For lasers we need coatings with high reflectance. Look at the following system

We take system with high/low/high/low……refractive index. For such a system we have:

nL nL nL
nH nH

n0=1

......

nT=1
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Mi =
coski di

−i
ni

sin k idi

−ini sin k idi cos kidi

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

Let us choose a system where each layer has an optical thickness of  a quarter wawelength:
kidi = π/2.

  

Mi =
0 −i

ni
−ini 0

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

For 2N layers we get a total transfer matrix:

M =
0

−i

nL

−inL 0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

0
−i

nH

−inH 0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

0
−i

nL

− inL 0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

0
−i

nH

−inH 0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅ ⋅ ⋅

0
−i

nH

−inH 0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

The product of two neighbouring matrices is of  the form

P =
−nH / nL 0

0 −nL / nH

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

This is diagonal and the product of 2N matrices  then becomes

  
M2N =

−nH / nL 0
0 −nL / nH

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

N

=
(−nH / nL )N 0

0 (−nL / nH )N

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

For the reflection coefficient this becomes:

  
r =

(−nH / nL )N − (−nL / nH )N

(−nH / nL )N + (−nL / nH )N

and the intensity reflection coefficient R

  
R = r2 =

1− (nL / nH)2N

1+ (nL / nH )2N

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2

We see directly that R → 1   when N is large.

WE have not included the substrate in this calculation. If we do, we will find that the
reflectivity depends upon which film is the first; the high index or the low index film. If we
start with a low index film and include the substrate the final result is:
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R = r 2 =

A − DnT

A + DnT

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

2

=
1 − (nL /nH )2NnT

1 + (nL /nH )2N nT

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

2

Starting with a high index film we get:

R = r 2 =
A − DnT

A + DnT

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

2

=
1 − (nH/nL )2NnT

1 + (nH/nL )2N nT

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

2

From this we see that at pays to start with the high index film
.
The bandwith of the filter can be shown to be given by the expression

sin
π

2

∆λ

λ
= ±

na − nb

nb + na

≅ sin
π

2

∆λ

λ0

   da   λ ≈ λ0

where ∆λ is the bandwidth.

The figures below show two high reflectance filters wit 9 and 19 layers respectively.
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Design wavelength= 4600 Å, 9 layers



13

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4 4.5 5

R

E(eV)

Design wavelength 460 nm, 19 lag

n
H

=2.3

n
L
=1.38

BÅNDPASS FILTERS

A typical bandpass filter consist of two high reflectance filters and a Fabry Perot
interferometer; see the figure.

Substrat

Film
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POSSIBLE BANDPASS STRUCTURES

Possible configurations are given in the figure

MORE ANTIREFLECTION COATINGS

An example is given in the figure.

n0

n1

n2

n3

H L H L H L HL

L L

H L H L H L H L

..... ....

H L H L H L HLH L H L H L H L

..... ....
HH

λ/4 λ/2
λ/4
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M =

−n2 /n1 0

0 −n1 /n2

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

r =
no

n2

n1

− n3

n1

n2

no

n2

n1

+ n3

n1

n2

r = 0 ⇒
n2

2

n1
2

=
n3

no

=======

The advantage is a higher bandwith compared to a single film. Another possible structure
is:

.substrat
424
λλλ

Eks.:       MgF2      ZrO2    CeF3  on glas

n =�1.37      2.1      1.63

THE INTERACTION BETWEEN ELECTROMAGNETIC RADIATION AND MATTER

We will now discuss the interaction between radiation and matter. The general properties of
the response function comes from the fact that the response is causal; i.e. the response
depends only on the past and not on the future. This general statement leads to the socalled
Kramers Kronig relations.

From causality we can write

  D (t) = εo  E (t) +   P (t)

  P (t)  is the total response of the system and it depends only on the past. Thus:

  P (t) = εo f(τ)
0

∞

∫   E (t-τ)dτ =εo
  

f(τ)
−∞

∞

∫   E (t-τ)dτ  med f(τ)=0 for τ<0

f(τ) is the response. It is zero for times in the future and this is reflected in the way we wrote
the integral.   t�=�0 is now, t�=�∞ is ∞ past.  f(∞)�=�o.

If we Fourier-transform the equation we get:
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  D (t) = 
  

dω
−∞

∞

∫   D (ω)e-iωt

E (t-τ) = 
  

dω
−∞

∞

∫ E (ω)e-iωt . eiωτ

Inserted in the first equation, we get

D (ω) = εo E (ω)+ εo E (ω) 
 

f(τ)
−∞

∞

∫ eiωτdτ

εr(ω) = 1 + f(τ)
−∞

∞

∫ eiωτdτ

ε is the dielectric constant. It can be complex εr(ω)�=�ε1�+�iε2.

From the equation we see that

εr* = 1 +  f(τ)
−∞

∞

∫ e-iωτdτ

This means that

ε1(ω) - iε2(ω) = ε1(-ω) + iε2(-ω)

From causality we see that the real part is symmetric in ω , the imaginary part is anti-
symmetric.  ε-1 is an analytic function in the complex upper half ω plane..  ε-1�→�0  when  
ω→i∞  since only  τ�>�0 contributes.

We will now calculate the Cauchy integral

  

ε(ω) − 1
ω − ω1−∞

∞

∫ dω =I

I = 0 because ε(ω) - 1 is regular in the upper half plane.

This can be written as:  Residue in ω = ω
1
 + P 

−∞

∞

∫  = 0, and the residue contribution becomes

-iπ(ε(ω1)�- 1).  Rearranging we obtain the expression
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ε(ω1) - 1 = 
  

1
iπ

P
ε(ω) −1
ω −ω1−∞

∞

∫ dω

We change integration variables, write out explisitly the real and imaginary parts and get
the Kramers Kronig relations in the form:

  
ε1(ω) = 1 +

1
π

P
ε2(ξ)
ξ − ω

−∞

∞

∫ dξ

ε2 (ω) =
1
π

P
ε1(ξ)
ξ − ω

−∞

∞

∫ dξ

=======================

P stands for "principal value" and we often write 2�x�
 0

∞

∫  instead of as above. Doing that we

get the Kramers Kronig relations in the form:

ε1(ω) = 1 +
2
π

P
ξε2(ξ)

ξ2 − ω2
0

∞

∫ dξ

ε2 (ω) =
2

π
P

ωε1(ξ)
ξ2 − ω2

0

∞

∫ dξ

Causality means that if we can measure say the real part of a function for all frequencies,
then we implisittly also know the imaginary part through the KK relations

CLASSICAL MICROSCOPIC THEORY FOR THE ELECTROMAGNETIC RESPONSE OF
MATERIALS

In a non-conductive medium, the electrons are localised, i.e. bound to a nucleus or in a bond
between two nuclei In an external electromagnetic field, the electrons are displaced a
distance r from its equilibrium position. This leads to a polarisation

  P = −Ner 

N is the number of electrons per volume. The displacement   D  is given by

D = ε0E + P = ε0εr E 

According to the classical Lorentz model, the electrons ate bound by a force with a linear
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force constant k. The equation of motion is then given by

  
m

d2r 
dt2 + mγ

dr 
dt

+ kr = −eE = −eE 0e− iωt

γ is a damping constant m is the electron mass.  A solution of this differential equation is

r =
−eE 0

−mω2 − imωγ + k
e− iωt

which gives the polarisation P 

  
P =

Ne2 / m
−ω2 − iωγ + k/ m

E 

k/m = ωo2  gives:

  
P =

Ne2 / m
−ω2 − iωγ + ω0

2 E 

With P = αE   we can write

D = ε0E + P = (ε0 + α)E = ε0εrE 

⇒ εr = 1+
α
ε0

 εr is the relative dielectric constant

Inserted in the equation above we get:

  
εr = 1 +

Ne2 / mε0

−ω2 − iωγ + ω0
2

Ne2/mεo has the dimension sek-2, we call it the plasma frequency squared, ωp2

  
εr = 1 −

ωp
2

ω2 + iωγ − ω0
2  =�N2

εr=N
2 is the dielectric constant of the system It is complex for a system where we have

absorption. If we write it out as real and imaginary parts, we get:��(N = n + iκ)
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ε1 = n2 − κ 2 =1 +
ω p

2 (ω0
2 − ω2)

(ω2 − ω0
2 )2 + γ 2ω2

ε2 = 2nκ =
ωp

2 ⋅ γω

(ω2 − ω0
2 )2 + γ2ω2

The figure shows the real and imaginary parts for εr
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If the system has several resonance frequencies we write:

  
N2 = εr =1+ ω p

2 f j
ω j

2 −ω 2 − iωγ jj

∑

fj is called the oscillator strength.

In the figure below we show the measure e2 or rather s=we2 for NaCl. We can se that the
spectrum consists of a number of resonances.
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One point has been ignored so far.

α =
Ne2 / m

−ω2 − iωγ + ω0
2

should be considered as an atomic polarisability. The field that polarises is the local field, not
the external field. This means that P/E for a crystal is given by

P /E =
Nα

1−
ε0

3
αN

=
ε −1

ε0

This can again be considered as an effective polarisability, the atomic get a correction from
the fields from the neighbouring atoms in a crystal:

αeff =
α

1−
ε0

3
αN

This can be written in the form (Claussius-Mosottis ligning)
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ε −1

ε + 2
=

εo
3

αN

DRUDE TEORI FOR METALLER

In metals the electrons are free. This means that ωo = 0 in the equations we derived. Such a
theory was first developed by  P. DRUDE.

  
ε = N2 =1−

ω p
2

ω(ω + iγ)

  
ε1 = 1 −

ωp
2

ω 2 + γ 2 Real part of ε

  
ε2 =

ωp
2 γ

ω(ω2 + γ 2 )
Imaginary part of ε

γ=�1/τ, where τ is the lifetime for excitations in the electron gas, i.e. the time between
collisions. Measurements of e allows us to determine the time between collisions in the
electron gas.  If we plot the equations above:
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The same collision time τ enters in the expression for the dc conductivity

σ =�Ne2τ/m

From Maxwells equations

∇ xH = ε0

∂E 

∂t
+

∂P 

∂t
+ J = ε0ε r

∂E 

∂t
+ J =

∂D 

∂t
we se that the dielectric constant εr  can be written as:

εr = 1 + iσ/ωε0.

or εr = εb + iσ/ωε0 if we have both bound and free electrons

2. ORDENS PROSESSER

ANHARMONISK POTENSIAL

WE will now show how second harmonic generation and sum and difference frequency
generation follows from a classical oscillator model if we include anharmonic contributions
to the potential. We include an anharmonic  contribution to the force given by max2. This is
the force we get for large amplitude motions around the equilibrium in the potential given
by the graph below
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Assume that a material is radiated at the same time by two waves. The equation of motion
is then, including the anharmonic force

m˙ ̇ x + γm˙ x + kx + max 2 = F = qETot

˙ ̇ x + γ ˙ x + ω0
2x + ax2 =

q
m

E1(e
iω 1t + e− iω1t) + E2 (eiω 2t + e − iω 2t )( )

If we assume that a is small we can solve this equation by iteration

x = x(1) + x(2) + x(3)  ⋅⋅⋅⋅⋅

P = Nq ⋅�x

The first order solution is found by setting a=0

  
x(1) = x(1)(ω i )

i
∑ =

q/m Ei

ωo
2 − ω i

2 − iω iγ
e± iωit

i
∑

The second order solution is found by shifting (ax(1))2 to the right side and insert the first
order solution. This gives

  
˙ ̇ x + γ ˙ x + ω0

2x =
q
m

E1(eiω1t + e− iω1t ) + E2(eiω 2t + e− iω 2t)( ) − a x(1)( )2

 This is as an ordinary oscillator, but with anew driving force that contains new driving
frequencies. ax(1) is of the form:

  x
(1) = α1e

iω1t + α2e
− iω1t + α3e

iω 2t + α 4e
− iω 2t
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x(1)( )2
= (α1e

iω 1t + α2e
− iω1t + α3e

iω 2t + α4e
− iω 2t )2

         = α
1

2e2iω 1t + α
2

2 e− 2iω1t + α 3
2e2iω 2t + α4

2e − 2iω 2t

            + α1α3e
i(ω 1 + ω2 ) + α1α 4e

i(ω1 − ω2 ).....

            + α1α2 e io ⋅ t + ......

  

⇒ x(2) = x(2 )(ω1 + ω2 ) + x(2) (ω1 − ω2 )

+ x(2) (2ω1) + x(2)(2ω2 ) + x(2 )(0) + c.c.

⇒ x(2) (ω1 ± ω2 ) =
2a(q/m)2 E1E2

(ωo
2 − ω1

2 − iω1γ ) (ωo
2 − ω2

2 m iω2γ )

                              ⋅
1

ωo
2 − (ω1 ± ω2 )2 − i (ω1 ± ω2 )γ

⋅ e − i (ω1 ± ω 2 )t

               x(2 )(2ω i ) =
−a(q /m)2 E1

2 ⋅ e − 2i ω it

(ωo
2 − ω1

2 − iω1γ)2 (ωo
2 − 4ω i

2 − i2ω2 γ)

We see that the systems now oscillates, not only at the frequencies  ω1 and ω2, but also at 2ω1 ,
2ω2, ω1+ω2,and ω1−ω2. This is used extensively in laser technology to create lasers at new
frequencies.


